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[1] The value restored and added by dynamical downscaling is quantitatively evaluated
by considering the spectral behavior of the Regional Atmospheric Modeling System
(RAMS) in relation to its domain size and grid spacing. A regional climate model (RCM)
simulation is compared with NCEP Reanalysis data regridded to the RAMS grid at each
model analysis time for a set of six basic experiments. At large scales, RAMS
underestimates atmospheric variability as determined by the column integrated kinetic
energy and integrated moisture flux convergence. As the grid spacing increases or domain
size increases, the underestimation of atmospheric variability at large scales worsens.
The model simulated evolution of the kinetic energy relative to the reanalysis regridded
kinetic energy exhibits a decrease with time, which is more pronounced
with larger grid spacing. Additional follow-on experiments confirm that the surface
boundary forcing is the dominant factor in generating atmospheric variability for
small-scale features and that it exerts greater control on the RCM solution as the influence
of lateral boundary conditions diminish. The sensitivity to surface forcing is also
influenced by the model parameterizations, as demonstrated by using a different
convection scheme. For the particular case considered, dynamical downscaling with
RAMS in RCM mode does not retain value of the large scale which exists in
the larger global reanalysis. The utility of the RCM, or value added, is to resolve the
smaller-scale features which have a greater dependence on the surface boundary. This
conclusion regarding RAMS is expected to be true for other RCMs as well.
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1. Introduction

[2] The term ‘‘downscaling’’ refers to the use of either
fine spatial-scale numerical atmospheric models (dynamical
downscaling), or statistical relationship (statistical down-
scaling) in order to achieve detailed regional and local
atmospheric data. The starting point for downscaling is
typically a larger-scale atmospheric or coupled oceanic-
atmospheric model run globally (GCM). The downscaled
high resolution data can then be inserted into other types
of numerical simulation tools such as hydrological, agri-
cultural, and ecological models. This paper focuses on
dynamical downscaling with a regional climate model
(RCM). By RCM we mean a limited area (weather
prediction) model (LAM) run for an integration time
greater than approximately two weeks, so that the sensi-
tivity to initial atmospheric conditions is lost [Jacob and
Podzun, 1997]. A summary of dynamical downscaling is
reported in chapter 10 of the 2001 Intergovernmental
Panel on Climate Change (IPCC) science report. By
examining a sample case with the Regional Atmospheric
Modeling System (RAMS), this paper presents evidence

of when downscaling may be a valid tool to enhance
spatial resolution and when it is not. LAM dynamical
downscaling can be classified into four distinct types:
[3] 1. Type 1: LAM forced by lateral boundary conditions

from a numerical weather prediction GCM or global data
reanalysis at regular time intervals (typically 6 or 12 h), by
bottom boundary conditions (e.g., terrain), and specified
initial conditions. A numerical weather prediction GCM is a
GCM in which the global initial atmospheric conditions are
not yet forgotten.
[4] 2. Type 2: LAM initial atmospheric conditions have

been forgotten, but results are still dependent on the lateral
boundary conditions from an NWP GCM or global data
reanalysis and on the bottom boundary conditions.
[5] 3. Type 3: Lateral boundary conditions are provided

from a GCM which is forced with specified surface bound-
ary conditions.
[6] 4. Type 4: Lateral boundary conditions from a

completely coupled earth system global climate model in
which the atmosphere-ocean-biosphere and cryosphere are
interactive.
[7] Tables 1 and 2 illustrate examples of each type of

downscaled model. Table 1 overviews RCM dependence on
the indicated constraints for the four types. Table 2 shows
that these constraints and the predictive skill of LAMs
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becomes less as an attempt is made to forecast further into
the future. Types 2 through 4 can be considered RCM
modes.
[8] With short-term numerical weather prediction

(Type 1), the observations used in the analysis to initialize
a model retain a component of realism even when
degraded to the coarser model resolution of a global model
(i.e., the data are sampled from a continuous field). This
realism persists for a period of time (up to a week or so),
when used as lateral boundary conditions for a weather
prediction LAM. This is not true with Type 4 simulations,
where observed data does not exist to influence the predic-
tions [Pielke, 2001]. LAMs cannot significantly increase
predictability if the solution is highly dependent on the large-
scale forcing supplied by the lateral boundaries. Even when
the model solution is strongly influenced by the surface
boundary, improved skill still cannot be achieved without
accurate lateral boundary conditions.
[9] In this work, the value retained and value added

by dynamical downscaling with a RCM is quantitatively

evaluated by considering the spectral behavior of the
RAMS model solution in relation to its domain size and
grid spacing. By ‘‘value retained’’ we mean how well the
RCM maintains fidelity with the large-scale behavior of
the global model forcing data. By ‘‘value added’’ we mean
how much additional information the RCM can provide
beyond the highest resolved wavelength of the global
model. We assume ‘‘perfect’’ bottom and lateral boundary
conditions, as defined respectively by observed SSTs and
atmospheric reanalyses (e.g., Type 2). Examples of Type 2
simulations include the Project to Intercompare Regional
Climate Simulations (PIRCS) as reported in Takle et al.
[1999]. In such a framework we can pose the questions:
(1) what is the dependence on the evolution of synoptic
features to the lateral boundary conditions, and (2) what is
the most appropriate domain size and grid spacing for
RCM downscaling?
[10] These questions have been previously investigated to

some extent by RCM experiments which change the spec-
ification of the lateral boundaries. This may be done using a

Table 1. Dependence of Regional Model on Indicated Constraints

Type 1 Type 2 Type 3 Type 4

Bottom boundary conditions terrain;
LDASa;

observed SSTs

terrain;
climatological
vegetation;

observed SSTs;
deep soil moisture

terrain;
climatological
vegetation;

observed SSTs;
deep soil moisture

terrain; soils

Initial conditions ETA analysis field none none none
Lateral boundary conditions Global Forecast

System
Atmospheric

Modelb

NCEP Reanalysisc global model
forced by observed

SSTs

IPCCd; U.S.
National

Assessmente

Regional ETAf

MM5g

RAMSh

ARPSi

PIRCSj COLAk/ETAl RegCMm

aAvailable at http://ldas.gsfc.nasa.gov/.
bAvailable at http://wwwt.emc.ncep.noaa.gov/gmb/moorthi/gam.html.
cKalnay et al. [1996].
dHoughton et al. [2001].
eAvailable at http://www.gcrio.org/NationalAssessment/.
fBlack [1994].
gGrell et al. [1994].
hPielke et al. [1992].
iXue et al. [2000, 2001].
jTakle et al. [1999].
kAvailable at http://www-pcmdi.llnl.gov/modldoc/amip/14cola.html.
lMesinger et al. [1997].
mGiorgi et al. [1993a, 1993b].

Table 2. Examples of Predictabilitya

Type Constraints

Day-to-day weather prediction 1 initial conditions; lateral boundary conditions
topography; other bottom land boundary
conditions; solar irradiance; well-mixed
greenhouse gases

Seasonal weather simulation 2 lateral boundary conditions; topography; other
bottom land boundary conditions; solar
irradiance; well-mixed greenhouse gases

Season weather prediction 3 topography; other bottom land boundary
conditions; sea surface temperatures; solar
irradiance; well-mixed greenhouse gases

Multiyear climate prediction 4 topography; solar irradiance; well-mixed
greenhouse gases

aFrom top to bottom of table: more constraints to fewer constraints; from bottom to top of table: less predictive skill to greater
predictive skill.
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so-called ‘‘Big Brother’’ approach [e.g., de Elı́a et al., 2002;
Denis et al., 2002, 2003]. In these types of experiments,
forcing data to a nested RCM grid (Little Brother) are
spectrally degraded to eliminate small-scale variability.
The results are then compared to a reference simulation
(Big Brother) with no spectral degradation of the forcing.
Another approach is to change the specification of the
primary RCM grid itself, which is what we choose to do
here. Denis et al. [2002] provide a good summary of studies
of this type, including Jones et al. [1995, 1997], Jacob and
Podzun [1997], and Seth and Giorgi [1998]. All of these
studies note significant sensitivities to the specification of
the RCM grid, as shown, for example, in precipitation and
strength of mesoscale features.
[11] We extend their work with RAMS to show that,

absent a means of updating the interior of the domain, the
RCM cannot retain value of the large scale. We then show
the value added, or skill of the RCM, is dependent on how
the large scale is represented, how the surface boundary is
specified, and the model physics. Section 2 describes the
RAMS model and experimental methodology. Section 3
presents the results from RAMS downscaling sensitivity
experiments. A discussion and summary are presented in
sections 4 and 5. Tables 3 and 4 give a list of frequently
used acronyms and symbols.

2. Methodology

2.1. Description of RCM

[12] The RCM used in these experiments is the Regional
Atmospheric Modeling System (RAMS) Version 4.3.
RAMS was originally developed at Colorado State Univer-
sity to facilitate research into predominately mesoscale and
cloud-scale atmospheric phenomena, but has been extended
to larger scales over the last decade or so [Cotton et al.,
2003]. This model is fully three-dimensional, nonhydro-
static; includes telescoping, interactive nested grid capabil-
ities, supports various turbulence closure, short and long
wave radiation, initialization, and boundary condition
schemes [Pielke et al., 1992].
[13] Two domains sizes are used in the model sensitivity

experiments (Figure 1). We chose to simulate the month of
May 1993 because it is a time of vigorous synoptic wave
activity associated with large-scale flooding over the central
United States [e.g., Bell and Janowiak, 1995]. The first
domain covers all of the contiguous United States and is
similar to a typical numerical weather forecast domain used
operationally for the WRF and ETA models at the National
Centers for Environmental Prediction (NCEP) and National
Severe Storms Laboratory (NSSL). The second domain

covers almost the entire western half of the Northern
Hemisphere. A summary of the domain information and
relative computational expense is shown in Table 5.
[14] Each domain is run for a horizontal grid spacing

corresponding to 200, 100, and 50 km for a total of six runs
which comprise the basic set of experiments. Aside of the
grid spacing and domain size, all the other conditions in
RAMS are uniform. The model time step is 60 s. Thirty
vertical levels are used with a maximum vertical grid
spacing of 1000 m. The turbulent mixing parameterization
of Mellor and Yamada [1974] is used to compute the
vertical mixing coefficients. A modified Smagorinsky
[1963] deformation-based scheme is used to compute the
horizontal mixing coefficient (or diffusion), per grid point
defined as:

Ki ¼ ro max Kmh; CxDxð Þ2S0:52

h i
ð1Þ

where ro is the basic state air density, Dx is the model grid
spacing, Cx is a user-specified dimensionless coefficient to
obtain a characteristic horizontal mixing length scale, and S2
is the horizontal strain rate (a function of the horizontal
winds). Kmh is a lower limit on the horizontal diffusion
according to the empirical formula:

Kmh ¼ 0:075KA Dx
4=3

� �
ð2Þ

where KA is a user-defined parameter. The typical range of
Kmh can be estimated by varying KA in equation (2) from
0.1 to 1, as suggested by the RAMS Users Guide. The

Table 3. Commonly Used Acronyms

Acronym Meaning

AOGCM atmosphere-ocean general circulation model
GCM general circulation model
LAM limited area model
MFC integrated moisture flux convergence
NCEP National Centers for Environmental Prediction
NSSL National Severe Storms Laboratory
RAMS Regional Atmospheric Modeling System
RCM regional climate model
SST sea surface temperature

Table 4. Commonly Used Symbols

Symbol Meaning

ai, j RCM variable

ai,j
N detrended RCM variable
cp,q spectral coefficient of given detrended atmospheric

model variable as function of zonal and meridional
wavenumber

Cx user-specified coefficient to obtain a characteristic
horizontal mixing length scale

Eki, j column average total kinetic energy
Ek domain-averaged total kinetic energy
i subscript for x-dimension of reduced RCM grid
j subscript for y-dimension of reduced RCM grid
k wavenumber
kmax* maximum physically resolved wavenumber of NCEP

reanalysis
kNyquist Nyquist wavenumber of RCM
kNyquist* Nyquist wavenumber of NCEP reanalysis
Dk minimum wavenumber for a given RCM grid spacing
KA user-specified parameter used in computing lower limit of

horizontal mixing coefficient
Ki horizontal mixing (diffusion) coefficient
NI maximum x-dimension of reduced RCM grid
NJ maximum y-dimension of reduced RCM grid
p subscript for zonal wavenumber
q subscript for meridional wavenumber
S2 horizontal strain rate
S(k)obs spectral power per wavenumber of regridded reanalysis
S(k)mod spectral power per wavenumber of RCM simulation
DS(k)frac fractional change in spectral power per wavenumber
Dx RCM grid spacing
L wavelength
ro basic state air density

�sEK
2 domain-averaged kinetic energy variance
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ranges of Kmh for the three grid spacings used in the
experiments are shown in Table 6.
[15] The model is initialized and updated at the lateral

boundaries every six hours by the NCEP reanalysis at
2.5� latitude by 2.5� longitude [Kalnay et al., 1996] with
three nudging points at the lateral boundary. Lateral

boundary nudging is according to the form of Davies
[1976]. This common technique in LAMs is summarized
by Laprise [2003]. The model variables are nudged to the
larger-scale forcing data over a (user-defined) sponge zone
of grid points, and the e-folding time varies from a short
timescale near the boundary to an infinite value beyond the

Figure 1. RAMS domains for model sensitivity experiments for Dx = 200 km.

Table 5. Model Domain Specifications and Computational Increase for the Six Basic Experimentsa

Basic Experiment Dx, km Domain RCM Grid Dimensions Computational Increase

1 200 small 40 � 25 1
2 100 small 80 � 50 3.5
3 50 small 160 � 100 15.2
4 200 large 80 � 50 3.5
5 100 large 160 � 100 15.2
6 50 large 320 � 200 62.8

aThe computational increase is computed as the time to complete one model time step for the given domain divided by that for
the basic experiment 1.
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sponge zone. The physical width of sponge zone does
change with grid spacing, but the number of nudging points
is sufficient to resolve the Nyquist wavenumber of the given
LAM grid. The version of RAMS used here also has a simple
four-dimensional data assimilation option to nudge the
interior prognostic variables of wind, temperature, pressure
(Exner function), and water vapor at a user-specified time-
scale, which we implement for some of the experiments
discussed in section 3. The SSTs for May 1993 are from the
Reynolds and Smith [1994] data and are constant for the
month of simulation. Topography and vegetation data are
from standard products in the RAMS model package. The
soil type (sandy clay loam) is uniform for all land areas and
the model is initialized with homogeneous soil moisture at
50% of field capacity.
[16] The simplest and most computationally expedient

parameterizations were chosen for the set of basic experi-
ments. The Kuo convection scheme [Kuo, 1974; Molinari,
1985] and Mahrer and Pielke [1977] radiation parameteri-
zation options are used with no explicit treatment of cloud
microphysics. The convection scheme is the only mecha-
nism in the model to produce rainfall. Otherwise, water
vapor is advected or diffused in the atmosphere, even if
supersaturation occurs. Buoyancy and radiative effects of
water vapor are accounted for. We also used the Kain-
Fritsch (KF) convection scheme [Kain and Fritsch, 1993] as
recently implemented in RAMS by Castro et al. [2002] for
some of the follow-on experiments described in section 3.
We acknowledge that neglecting large-scale precipitation
produced by supersaturation may not be physically realistic.
However, we emphasize that these experiments are
designed to test RCM sensitivity using the simplest and
most computationally expedient parameterizations. Even
when RAMS includes a large-scale condensation scheme,
its warm season precipitation is mostly from convection.
The effect of using an explicit microphysical representation
of large-scale precipitation is considered in section 4.
[17] The nudging timescale, the number of nudging points

at the lateral boundary, and other user-specified parameters,
such as vertical diffusion, are held constant for all experi-
ments according to suggested values in the RAMS Users
Guide (http://www.atmet.com/html/documentation.shtml).
The choice of user-defined parameters and parameterization
options could be varied to see if the results from the present
investigation would possibly change. However, the intent
here is demonstrate the characteristics of the basic RAMS
model ‘‘off the shelf’’ without any adjustment to suggested
user specifications. The skill performance of the RAMS
model in a RCM mode is reported in Eastman et al. [2001]
and Liston and Pielke [2001]. Additional experiments
which investigate the influence of surface boundary con-
ditions and interior nudging are described in the results
section.

[18] Data were saved twice per day at 0 UTC and 12 UTC.
To determine how model variables differ from the ‘‘perfect’’
reanalysis model as time proceeds, the reanalysis data
were vertically and horizontally interpolated to RAMS
grid each day at 0 UTC and 12 UTC for all the model
simulations. We treat the RAMS regridded reanalysis as
the ‘‘observed’’ NCEP reanalysis on the given LAM grid.
While this procedure may introduce errors into what we
consider ‘‘perfect observations’’ (R. Walko, personal com-
munication), the regridded reanalysis is very consistent
with the reanalysis itself, particularly for larger-scale
features. Any difference between the model output and
regridded reanalysis less than the smallest wavelength
resolved by the reanalysis, then, is due to the physics of
the RAMS model. By ‘‘physics’’ we mean the dynamical
core of the model and the model parameterization
schemes. As in de Elı́a et al. [2002], to eliminate possible
spurious values at the model lateral boundaries, the three
outermost grid points were first removed from the raw
model grid. The reduced grid of NI � NJ defines the grid
used henceforth in the analyses.

2.2. Two-Dimensional Spectral Analysis of
Model Variables

[19] There are various methods to determine the power
spectra of an atmospheric variable (ai, j) within a LAM
domain. As summarized by Laprise [2003], the earliest
and most straightforward method is that of Errico [1985]
which uses a double Fourier series after removing a linear
trend in each direction. Other approaches which also
remove a trend in the RCM domain include those of
Tatsumi [1986] and Chen and Kuo [1992]. Denis et al.
[2002] recently used double cosine transforms to spectrally
analyze LAM fields without subtracting any component.
We choose to use Errico’s [1985] method here for its
simplicity, but we are mindful of the caveats, as discussed,
for example, in Denis et al. [2002]. Detrending removes
the large-scale gradient across the LAM domain, which
may affect the large-scale components of the spectrum. A
spurious pattern of lines may appear in the detrended data,
as shown, for example, in Figure 3 from Denis et al.
[2002]. Finally, the technique should not be used for fields
which are noisier at the boundaries than in the LAM
interior.
[20] We now briefly review Errico’s [1985] method to

determine the power spectra of (ai, j) within the LAM
domain with constant grid spacing and dimension NI �
NJ. To remove the partially resolved spatial variability of
waves beyond the scale of the domain, the data are linearly
detrended along constant i, j. For example, for each j, the
slope is determined:

sj ¼
aNI ;j � a1;j

NI � 1
ð3Þ

For each i, j the linear trend in the I direction is removed:

a0i;j ¼ ai;j �
1

2
2i� Ni � 1ð Þsj ð4Þ

An identical procedure is completed with i and j reversed in
(1) and (2) and with a0i, j replacing ai, j in (2). The result is a
detrended field ai,j

N . The spectral coefficients (cp.q) of ai,j
N

Table 6. Typical Values for the Lower Limit of the Horizontal

Mixing Coefficient (Kmh) Estimated by Equation (2)a

Dx, km Kmh

200 1.38 � 104 � 1.38 � 105

100 3.48 � 104 � 3.48 � 105

50 8.77 � 104 � 8.77 � 105

aUnits are in m2 s�1.
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are determined by the discrete two-dimensional Fourier
transform:

cp;q ¼
1

NI � 1ð Þ NJ � 1ð Þ
XNJ�1

j¼1

XNI�1

i¼1

aNi;je
ffiffiffiffiffi
�1

p
Dxv ð5Þ

v ¼ p i� 1ð Þ þ q j� 1ð Þ ð6Þ

where p and q represent zonal and meridional wavenum-
bers with discrete values:

p ¼ 2pl
Dx

1

NI � 1
l ¼ 0;	1; . . . ;	NI

2
ð7Þ

q ¼ 2pl
Dx

1

NJ � 1
l ¼ 0;	1; . . . ;	NJ

2
ð8Þ

The one-dimensional power spectrum (in k space) is given
by

S kð Þ ¼
X

cp;qcp;q* ð9Þ

where cp,q* is the complex conjugate of cp,q. The one-
dimensional wave number (k) is

k ¼ p2 þ q2
� �1=2 ð10Þ

Successive values of k are evenly spaced in wavenumber
space by the minimum wavenumber (Dk), which is defined
by the minimum fundamental wavenumber of p and q:

k � 1

2
Dk < p2 þ q2

� �1=2
< k þ 1

2
Dk ð11Þ

The maximum wavenumber is defined by the Nyquist
wavenumber of the grid:

kNyquist ¼
p
Dx

ð12Þ

[21] When the reanalysis data are interpolated to the
RAMS oblique polar stereographic (rectangular) grid, the
maximum resolved wavenumber in Cartesian space will
slightly decrease with decreasing latitude. For reference, we
nominally define the Nyquist wavenumber of the reanalysis
here as its minimum possible value on the globe, which
occurs at the equator:

kNyquist* ¼ 1:13� 10�5m�1

This corresponds to a minimum resolved wavelength (l) of
approximately 550 km. Some atmospheric modeling texts,
though, suggest that the minimum wavelength that has
meaningful representation in a discrete model is not 2Dx,
but at least 4Dx [Pielke, 2002]. Using this definition, the
wavenumber of physically resolved waves in the reanalysis
is likely:

kmax* ¼ 5:65� 10�6 m�1

corresponding to a maximum wavelength of approximately
1100 km. This differentiation between kNyquist* and kmax*
will prove helpful in explaining the behavior of model
spectra in section 3. Henceforth, kmax* will also be used as
the separation point between what is referred to as ‘‘large’’
(k < kmax* ) and ‘‘small’’ scale (k > kmax* ).

2.3. Model Variables Analyzed

[22] In this study, we investigate two atmospheric model
variables (ai, j) using the methodology just described:
(1) the column average total kinetic energy (Eki, j), and
(2) the column integrated moisture flux convergence
(MFCi, j). There are two a priori reasons for selecting these
particular atmospheric variables. First, they are good diag-
nostic measures of the energy and moisture budgets,
respectively, within the model. Second, each variable
reflects different scales of atmospheric behavior. The inte-
grated kinetic energy is principally a function of large-scale
winds at upper-levels (less than 500 mbar) and so should
be relatively insensitive to surface forcing. MFC, on the
other hand, should be more sensitive to surface boundary
forcing since water vapor rapidly decreases upward. MFC
is a good proxy for rainfall and low-level vertical motion.
Additionally, in spring and summer MFC on a continental
scale in North America is related to a topographically
forced diurnal cycle. This a priori physical understanding
of the two atmospheric fields being analyzed is critical in
explaining their spectral behavior in the RAMS simula-
tions. The model-generated precipitation is also analyzed
and compared to observations. As a surface field, precip-
itation is considered because it is one of the best observed
quantities to validate RCM performance and a principle
diagnostic variable used in RCM studies.
[23] The column-average total kinetic energy is computed

using a stepwise integration downward through the column,
divided by the pressure depth of the (model) atmosphere.
For each i, j point:

Eki;j ¼
1

g ps � pTop
� �

Zps

pTop

1

2
u2 þ v2 þ w2
� �

dp ð13Þ

where ps is surface pressure, pTop is the pressure at the
highest vertical level, and u, v, and w correspond to the zonal,
meridional, and vertical wind, respectively. The domain-
averaged total kinetic energy is then:

Ek ¼

PNJ

j¼1

PNI

i¼1

Eki;j

NINJ

ð14Þ

Similarly, the column integrated moisture flux convergence
for each i, j point is

MFCi;j ¼ � 1

g

Zps

pTop

r � q v
*

� �
dp ð15Þ

[24] It is important to note that these fields are computed
as a post-processing step after the model simulations are
completed. None of the model variables used in the
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computation of kinetic energy or MFC exhibits variability
at the boundary that is significantly different from the
interior, so the two-dimensional (2-D) spectral analysis
procedure is justified. While the same cannot perhaps be
said of precipitation, we believe the spectral analysis for
that field is also justified because the area analyzed (the
contiguous United States) for this variable is well within
the RCM interior. The results for precipitation spectra, as
will be shown later, are also physically reasonable.
[25] Once the spectrum of a given variable is computed

for a particular analysis time, it is smoothed using a three-
point weighted filter. This smoothing is necessary to reduce
noise before comparison with different spectra. To compare
the spectral power per wavenumber of the reanalysis assim-
ilation S(k)obs to the model simulation S(k)mod, the fractional
change in spectral power per wavenumber is computed at
each analysis time as:

DS kð Þfrac¼
S kð Þmod
S kð Þobs

� 1 ð16Þ

[26] Results are presented in terms of this ratio averaged
over the thirty (twice-daily) analysis times for the last
fifteen days of simulation, rather than the actual spectra
themselves. It is important to note that only the latter part of
the simulation is analyzed, to avoid any spin-up issues and
ensure the model is in a RCM mode. If the model simula-
tion has, on average, more variability than the regridded
reanalysis for a given wavenumber, the ratio will be
positive, and vice versa. If DS(k)frac is less than zero for a
given value of k, than RAMS does not add any variability to
ai, j beyond the NCEP reanalysis. For experiments described
in section 3.4, in which one model simulation (mod1) is

compared to a second model simulation (mod2) the formu-
lation for DS(k)frac is

DS kð Þfrac¼
S kð Þmod1
S kð Þmod2

� 1 ð17Þ

This second formulation is useful to determine if surface
information is adding value for k > kmax* , in the absence of
observed mesoscale data to validate the model against. We
compare in section 3.4 the model spectra of precipitation
directly to the corresponding NCEP observations (regridded
to the RAMS model grid), in which case:

DS kð Þfrac¼
S kð ÞprecipRAMS

S kð ÞprecipNCEP
� 1 ð18Þ

We present the results for DS(k)frac in the proceeding sections
on a logarithmic (base 10) scale with the corresponding
wavelength scale (in m) also displayed on the plots. DS(k)frac
may appear more noisy at smaller scales, and this is expected
because (1) the spectrum is more highly resolved in physical
space and (2) the ratio is emphasizing very small differences
between two spectra at high wavenumbers and very large
differences at low wavenumbers.

3. Results

3.1. An Illustration of Simulated 500-mbar Height

[27] We select a sample model-simulated day with a
highly amplified 500-mbar height field (Figure 2). This
particular day is twelve days from model initialization, and
it is generally illustrative of what the RAMS model
produces in a Type 2 downscaling mode. Significant

Figure 2. The 500-mbar height (m) on 0Z UTC, 12 May 1993, for indicated model basic experiments
and NCEP Reanalysis.
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synoptic features apparent in reanalysis observations are
not present in the model simulations. For example, the
ridge in the central United States is too far south and west,
and the cutoff lows off the California coast and in the
central United States are not as strong or appear as open
waves. The height field degrades with increased domain
size. Such errors lead to significant differences in repre-
sentation of surface fields, such as precipitation (see
section 3.4). Even with the smallest domain and 50 km
grid spacing, the highly amplified features are not as
defined as they are in the reanalysis.
[28] To illustrate this loss of variability in 500-mbar height

further, Figure 3 shows the average error in 500-mbar height
for the last fifteen days of simulation for the three model
domain sizes corresponding to Figure 2. The errors progres-
sively worsen as both grid spacing increase and domain
size increase, exceeding 120 m in the central North Pacific
for the large 200 km domain. The greatest underestimation
of mean 500-mbar height occurs in regions of low pressure
troughs, such as off the west coast of North America and
Europe, and the semipermanent trough near Hudson Bay.
These observations indicate that RAMS is not correctly
retaining value of the large-scale as given by the NCEP
reanalysis. A very similar result was found by Jones et al.
[1995] downscaling GCM data over Europe, particularly
for a large RCM domain.

3.2. Two-Dimensional Spectral Analysis of Basic
Experiments

[29] DS(k)frac averaged over the last fifteen days of
simulation is shown for kinetic energy and MFC for the

small domain (basic experiments 1–3) in Figure 4. As
previously mentioned, k in Figure 4 is presented on a
logarithmic scale. kmax* and kNyquist* are indicated with
dashed and solid lines, respectively, for reference. We have
two a priori expectations for behavior of DS(k)frac with
respect to k. First, the regional model should correctly retain
value of the variability of kinetic energy and MFC present
in the reanalysis data. Thus, in the region k < kmax* DS(k)frac
should be near zero. Second, though there is likely some
aliasing of the reanalysis data to larger wavenumbers, the
regridded reanalysis (S(k)obs) should have rapidly decreas-
ing spectral power from kmax* to kNyquist* and little or no
spectral power for k > kNyquist* . We should then expect that
DS(k)frac should always be greater than zero in the region
k > kNyquist* . It is in the region k < kmax* where DS(k)frac is
more physically meaningful. Dissipation of kinetic energy
in nature occurs at wavenumbers greater than kNyquist* and
so the value of DS(k)frac at the large scale (low wave-
numbers) is due entirely to the physics of the RCM.
[30] For kinetic energy (Figure 4a), several characteristic

behaviors of DS(k)frac are independent of grid spacing. For
wavenumbers below kmax* (l > 1100 km), the model under-
estimates the spectral power and does not retain value of the
large scale. The greatest underestimation appears to be at
kmax* itself. This affects the development of baroclinic waves
in the model, which was apparent from Figure 2. Then, as k
increases towards kNyquist* and beyond, there is an increase in
spectral power of the RCM compared to the regridded
reanalysis. This makes sense given our a priori assumption
for behavior of regridded reanalysis spectra. The increase
could be due to either forcing from the surface boundary or

Figure 3. Average error in RAMS-simulated 500-mbar height (m) for the given model domain
constraints (last 15 days of simulation). Contour interval is 10 m.
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local hydrodynamic instabilities. For the 50 km simulation,
as k increases RAMS begins to add value to kinetic energy
(DS(k)frac > 0) at a point between kmax* and kNyquist* and
continues to add value thereafter. Similar behavior is also
observed for MFC as k increases, (Figure 4b) with a low
value of DS(k)frac near kmax* and an increase near kNyquist* and
beyond.
[31] Changes in the grid spacing and domain size also

have characteristic responses in DS(k)frac. As grid spacing
increases, DS(k)frac decreases for k < kmax* . For the 200 km
or 100 km grid spacing small domain run (basic experi-
ments 1 and 2), DS(k)frac for kinetic energy does not exceed
zero for any value of k. Though we should expect DS(k)frac
to be greater than zero beyond kNyquist* , it is not for the larger
domains. In these cases RAMS is not adding any informa-
tion beyond the noise present in the regridded reanalysis.
The same general behavior is also observed for MFC
(Figure 4b). DS(k)frac does exceed zero for the very largest
of scales, though much of the variability of MFC and
rainfall occurs at smaller scales. The larger domain (kinetic
energy shown in Figure 5) exhibits identical behavior as the
small domain, except that the loss in DS(k)frac at large
scales, with the exception of the 200 km grid spacing
simulation, is worse than for the corresponding small
domain experiments at the same grid spacing. The under-
estimation of variability at larger scales dramatically affects
how the RCM adds value at the smaller scale (k > kmax* ), and

this will be shown for RCM-generated precipitation in
section 3.4.

3.3. Time Evolution of Model Simulated to Regridded
Reanalysis Kinetic Energy

[32] The time evolution of the fraction of model simulated
to regridded reanalysis domain averaged total kinetic energy
(Ek) is shown in Figure 6 for the six basic experiments.
Ek should be very well reflected by the regridded reanal-
ysis since, as mentioned, it mostly reflects the upper-level
horizontal winds at scales large scales. Regardless of grid
spacing or grid size, the ratio of model simulated to
regridded reanalysis Ek in all of the simulations decreases
in time, on average. It is closer to the reanalysis kinetic
energy at certain times when the flow is more zonal. This
decrease is particularly pronounced during approximately
the first few days of RCM simulation, then gradually
levels off. For the small grid, 50 km grid spacing simu-
lation (basic experiment 3), approximately 85% of the
regridded reanalysis Ek is preserved after 30 days of
simulation, but over 30% is lost for the 200 km grid
spacing simulation (basic experiment 1). As the grid
spacing for the small domain increases, the loss of kinetic
energy worsens. Shown also in Figure 6 are the same
results for the area of the large domain within the
small domain (dotted curves). Considering the same
area in all the simulations, the loss in kinetic energy

Figure 4. Fractional change in spectral power (DS(k)frac) versus log10(k) and wavelength, small domain
experiments for (a) column-average total kinetic energy and (b) column integrated moisture flux
convergence (MFC). The dashed black line indicates kmax* , and the solid black line indicates kNyquist* . k in
units of m�1. Wavelength in units of m.

D05108 CASTRO ET AL.: DYNAMICAL DOWNSCALING USING RAMS

9 of 21

D05108



also worsens with increased domain size. For the
200 km grid spacing large domain, the model under-
estimates the observed kinetic energy by nearly 50%
after thirty days of simulation. The reasons for this loss
in kinetic energy, and solutions to alleviate it, will be
discussed in section 4.
[33] Additionally, Figure 7 shows the time evolution of

the fraction of model simulated to reanalysis regridded
domain-averaged kinetic energy variance (�sEK2 ). It is very
similar to Figure 6. The model underestimates �sEK

2 for all
grid spacings. In general, as the domain size gets larger
and the grid spacing increases, the underestimation of
�sEK
2 worsens, though there are specific days that are

exceptions. In a mean sense, this underestimation also
worsens as time proceeds, irrespective of grid spacing or

domain size. The periods where �sEK
2 is most underestimated

are times where the synoptic pattern is highly amplified; it
is better estimated at times of more zonal flow. At the end
of the simulation period, �sEK

2 is underestimated by the
model in the range of approximately 10-30% for the small
domain. A similar result is shown by von Storch et al.
[2000, Figure 5] considering the meridional winds simulated
by the regional climate model REMO with only lateral
boundary forcing.

3.4. Additional Follow-On Experiments

[34] Four additional follow-on experiments were per-
formed to investigate the effect of internal nudging
(Follow-on 1); a larger grid (Follow-on 2); a change in
the convective parameterization (Follow-on 3); and a

Figure 5. Fractional change in spectral power (DS(k)frac) versus log10(k) for column-average total
kinetic energy, small and large domain experiments: (a) Dx = 200 km, (b) Dx = 100 km, and (c) Dx =
50 km. Small domain experiments color-coded as in Figure 4, and large domain experiments shown as
corresponding solid black curve. The dashed black line indicates kmax* , and the solid black line indicates
kNyquist* . k in units of m�1. Wavelength in units of m.
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Figure 6. Time evolution of the fraction of model simulated to reanalysis regridded domain-averaged
total kinetic energy for the six basic experiments on equivalent grids. The small domain is indicated by a
solid curve, and the large domain is indicated by a dashed curve.

Figure 7. Same as Figure 6 for model domain-averaged kinetic energy variance.
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homogeneous surface boundary (Follow-on 4). These were
performed using the grid of basic experiment 3 (50 km,
small domain) because that maintained the best fidelity
with the reanalysis. In Follow-on 1, internal nudging on a
one-day timescale was activated. To put this in perspective,
according to the RAMS Users Guide, internal nudging at
an hourly timescale corresponds to ‘‘very strong nudging.’’
The RAMS Users Guide recommends an internal nudging
timescale of two to four hours for the typical RAMS
simulation with a short-term model integration (less than
a day), multiple nested grids, and explicit treatment of
microphysics. Our timescale for internal nudging is con-
siderably larger and exactly what is used in real-time
forecast application with a continental-scale domain in
South America (P. L. Silva Dias, personal communication).
In Follow-on 2, the model domain of the smaller grid is
extracted from the larger one in basic experiment 6.
Follow-on 3 uses the Kain-Fritch convection scheme, in
lieu of the Kuo scheme, with and without internal nudging.
In Follow-on 4, the model was run using flat topography,
a constant sea surface temperature (295 K), a single vege-
tation type (mixed cropland), and a single soil type (sandy
clay loam). This experiment serves as a control run to see
how the characteristic behavior of DS(k)frac is influenced by
the variable surface boundary, principally the topography.
These additional experiments are designed to assess the
value added by RAMS for small scales (k > kmax* ).
[35] For Follow-on experiments 1–3 we use equation (17)

for computation of DS(k)frac, where mod1 is the follow-on
experiment and mod2 corresponds with basic experiment 3.
Since we are now comparing model to model results,
DS(k)frac is physically meaningful for all k, even greater
than kmax* . A positive value of DS(k)frac in this case means
the model generated variability is greater than the basic
experiment, and vice versa.

[36] The monthly average difference in 500-mbar height
from observations for Follow-on 1 (internal nudging) is
shown in Figure 8. Compared to basic experiment 3 shown
in Figure 3 earlier, the same pattern of error appears, but the
magnitudes are less. This shows internal nudging, as would
be expected, is improving the model representation of the
large scale. DS(k)frac for kinetic energy and MFC are
shown for Follow-on 1 in Figure 9. With internal nudging
activated, variability of kinetic energy wavenumbers less
than kmax* does improve, and, therefore, lessens the loss in
kinetic energy with time as observed in Figure 6. We note
there is still some loss of kinetic energy compared to the
reanalysis, but it is not as large as that for the no-nudge
case shown in Figure 4. However, by imposing a strong
constraint on the interior of the domain, the variability of
kinetic energy is decreased for wavenumbers greater than
kmax* . For MFC, DS(k)frac is negative for all k. The decrease
in variability at high wavenumbers means that the small-
scale features are diminished in strength when internal
nudging is activated. In their work with RAMS, Weaver et
al. [2002] similarly found internal nudging weakened
mesoscale motions and lead to stronger turbulence in a
shallower boundary layer. For example, Figure 10 shows the
comparison values of monthly precipitation for the small
domains using lateral boundary nudging only and with
interior nudging on the small domain. In the nudged run,
precipitation throughout the domain is reduced, particularly
in the central and eastern United States. Figure 10 also shows
the precipitation for Follow-on 2 and Follow-on 4, which
will be discussed later. For Follow-on 2, precipitation
is substantially increased in regions of significant
topography.
[37] The precipitation results for Follow-on 2 (large-

domain) in Figure 10 would imply that the weaker the
influence of the larger-scale forcing of the reanalysis, the

Figure 8. Same as Figure 3 for Follow-on 1 (internal nudging). Contour interval is 5 m.
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greater control the surface boundary conditions exert on
the vertical motion and distribution of precipitation. The
behavior of RAMS in this respect would be identical to
other mesoscale models [e.g., Jones et al., 1995, 1997;
Jacob and Podzun, 1997; Seth and Giorgi, 1998]. For
Follow-on 2, the ratio of the spectra of the large (extracted)
domain (mod1) to the small domain (mod2) was computed
using equation (17), and these are shown in Figure 11.
Increasing the domain size reduces the variability of kinetic
energy for all k, and this should be expected given the results
already seen. However, DS(k)frac for MFC is greater than
zero for k > kmax* . We show later in Follow-on 4 that the
mechanism which is enhancing variability of MFC at that
scale is the topography.
[38] Use of the KF convective parameterization scheme

(Follow-on 3) markedly changes the model-generated
precipitation, as shown in Figure 12 along with the
corresponding NCEP 0.25� gauge observations [Higgins
et al., 1996]. The KF scheme produces more precipitation
in the simulation domain than the Kuo scheme, whether
internal nudging is activated or not. The KF scheme in
RAMS generally overestimates precipitation in areas of
steep, elevated terrain. A terrain-adjusted trigger function
can alleviate this problem [Castro et al., 2002]. In Figure 13,
changing the convection scheme does not change the
kinetic energy for k < kmax* . It does modestly increase the
kinetic energy (by about 20%) beyond kmax* . The variability
in MFC is much larger, particularly for k > kmax* . In this
range, the KF scheme is more than doubling the variability
of MFC. In the KF simulations, the stronger MFC vari-
ability is explained by the enhanced rainfall. Over the
length of a RCM simulation, the use of a different
convection scheme may dramatically effect the surface
energy and moisture budget of the model and, hence,
surface feedback to the atmosphere.
[39] The question, however, is to determine, with respect

to precipitation, which particular model setup yields the

best result in terms of the NCEP observations shown in
Figure 12. Given that these are Type 2 dynamical down-
scaling simulations, it is reasonable to expect that the
RCM should reproduce (in a gross sense) the day-to-day
climate variability on weekly and longer timescales. An
evaluation of model performance against observations
defines the model skill. Precipitation results are considered
for four different RAMS experiments: Kuo with no interior
nudging (basic experiment 3), Kuo with interior nudging
(Follow-on 1), KF with no interior nudging, and KF with
interior nudging (Follow-on 3). Considering the last fifteen
days of simulation, a spatially varying correlation coeffi-
cient was determined using daily precipitation totals. The
square of the correlation coefficient yields the spatially
averaged explained variance of model precipitation to
observations. The difference in monthly precipitation from
the NCEP observations along with the domain-averaged
bias and explained variance are shown in Figure 14.
Though fifteen days of data are insufficient to generate a
statistically significant signal, they are nonetheless good
enough show the biases associated with each convection
scheme and how interior nudging changes the explained
variance of precipitation in the model domain.
[40] The Kuo scheme underestimates the precipitation in

the central United States and overestimates in regions of
steep terrain gradients, such as occurs in the Rocky Moun-
tains or Appalachians. Though the bias in the no interior
nudging case is the smallest of the simulations considered
(�7.50 mm), the domain-averaged explained variance of
precipitation is the lowest of the simulations considered in
Figure 14 (9.7%). The domain-average explained variance is
about the same for Follow-on 2 (large domain), but precip-
itation biases associated with terrain are enhanced (not
shown). When the entire month is considered, the explained
variance for the large-domain experiment is lower than that
of the small domain. This suggests that better representation
of the large scale in the smaller domain experiment improves

Figure 9. Average fractional change in spectral power (DS(k)frac) versus log10(k) and wavelength for
(a) column- averaged kinetic energy and (b) column integrated moisture flux convergenc e (MFC),
Follow-on 1 (internal nudging). The dashed black line indicates kmax* , and the solid black line indicates
kNyquist* . k in units of m�1. Wavelength in units of m.
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the RAMS model-generated precipitation. When interior
nudging is applied, the underestimation of the Kuo scheme
worsens in the central United States (a domain-average
bias of �16.79 mm). The explained variance of daily
precipitation increases (to 16.7%). Even though precipita-
tion is more underestimated when interior nudging is
applied, its spatial distribution is closer to observations.
[41] Considering the KF simulation absent internal nudg-

ing, precipitation is generally overestimated everywhere

with a large positive domain-averaged bias (45.85 mm).
The problem with excessive precipitation in steep terrain
gradients is magnified. The KF simulation with interior
nudging greatly improves the precipitation error in the
central and eastern United States. However, the problem
with high precipitation in the mountains still exists, and
therefore there is a high bias in precipitation (18.75 mm). As
with the Kuo scheme, the simulation with interior nudging
yields a better domain-averaged explained variance.

Figure 10. RAMS-simulated convective precipitation with the Kuo scheme for model constraints
indicated. Period considered is last 15 days of simulation. Precipitation in mm.

Figure 11. Same as Figure 9 for Follow-on 2 (larger grid).
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[42] How does the spectral behavior of model-generated
precipitation correspond to observations for these four
simulations in Figure 14? Figure 15 shows DS(k)frac of
the RAMS precipitation compared to the NCEP observa-
tions following equation (18). The Kuo scheme, whether
internal nudging is applied or not, underestimates the
observed spatial variability at all scales. For the KF runs,
variability is enhanced, particularly at the larger scales,
because of the pattern of precipitation bias associated with

the terrain in the western United States. The best represen-
tation of the spatial variability of NCEP observations is
captured by the KF scheme with internal nudging. At the
small scale, the spatial variance of the KF generated
precipitation from the nudged run and the NCEP observed
precipitation is roughly identical. Therefore, though the
Kuo scheme has a lower-domain averaged bias, the Kain-
Fritsch scheme with internal nudging does the superior job
of representing the spatial distribution and variability of

Figure 12. RAMS-simulated convective precipitation with the Kain-Fritsch scheme for model
constraints indicated and observed precipitation from NCEP. Period considered is last 15 days of
simulation. Precipitation in mm.

Figure 13. Same as Figure 9 for follow-on experiment 3 (Kain-Fritsch convection).
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precipitation in RAMS for this particular month of May
1993.
[43] Finally, Follow-on 4 (homogeneous surface bound-

ary experiment) serves as a control to evaluate the impact of

topographic forcing. The precipitation for this experiment is
included in Figure 10. Compared to the other experiments
with the Kuo scheme, there is little precipitation in the
western United States associated with the topography, as

Figure 15. Fractional change in spectral power (DS(k)frac) versus log10(k) and wavelength for different
RAMS-generated model precipitation solutions on the 50 km small domain grid. k in units of m�1.
Wavelength in units of m.

Figure 14. Difference between RAMS-simulated precipitation and NCEP observed precipitation (mm)
over the contiguous United States for the model conditions specified. Domain-averaged bias and
explained variance (r2) included. Period considered is last 15 days of simulation.
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would be expected. There is also less precipitation in the
central and eastern United States, in areas of relatively
homogeneous terrain. Because spring and summer precip-
itation is tied to a diurnal cycle of convection forced by
the topography, eliminating the topography alters the
precipitation distribution across the entire continent. In
the evaluation of DS(k)frac, since the integrated kinetic
energy has little relationship to surface forcing, we omit
analysis of it here and focus exclusively on MFC. Also,
instead of evaluating the MFC on its own, we first
multiply it by the topographic gradient in the model and
then perform the two-dimensional spectral analysis described
in section 2. In this way, the relationship between the
topography and MFC can be evaluated. We perform this
analysis on Follow-on 4 (mod 2) as the control experiment
against which all other previous experiments with the 50 km
small domain are evaluated (mod 1) using equation (17). For
these experiments, DS(k)frac is interpreted as follows: if
greater than zero, the topography contributes to the variabil-
ity in MFC at a given value of k beyond what its variability
would be with no topography; if less than zero, it does not.
[44] Figure 16 shows DS(k)frac for the experiments with

the Kuo scheme (experiments labeled in the plot). For these
experiments, the largest positive value for DS(k)frac occurs
at approximately l � 250 km for the large domain exper-
iment. A similar, though weaker, peak appears for the
smaller domain, confirming that the increase in MFC
variability in Figure 11 is indeed due to increased sensitivity
to the topography when the domain is enlarged. In the run
with internal nudging, though, DS(k)frac is always below
zero, so the topography does not contribute to the variability
of MFC beyond the model simulation with no topography.
This does not necessarily imply, though, that the topography
is not contributing to the variability of MFC in this

particular simulation. Its influence is just weaker. Recalling
the pattern of precipitation bias in Figure 14, this likely
explains why the precipitation in the Kuo simulation, with
internal nudging especially, underestimates the precipitation
in the central and eastern United States. This convective
precipitation is due to a topographically forced diurnal cycle
of MFC which is underestimated by the model in that
particular configuration.
[45] For the experiments with the KF scheme (Figure 17),

we see similar behavior to the Kuo experiments. Topogra-
phy enhances MFC at the same preferential scale, and the
peak in DS(k)frac exceeds zero for the simulations in which
nudging is and is not applied. In spite of the internal
nudging for the KF case, the topography is able to add
information to the RCM and influence the diurnal cycle of
MFC. Hence, we observe the improvement in the spatial
variability of precipitation in the KF internally nudged
simulation described earlier. This provides further evidence
that the choice of (convective) parameterization schemes
seriously affects how the surface boundary adds information
to the RCM.

4. Discussion

[46] Absent interior nudging, the RAMS model in RCM
mode will have greater error at larger scales as both
horizontal grid spacing and domain size increase. This error
is due to the failure of the RCM to correctly retain value of
the large scale, which is particularly acute at the limit of
physically resolved waves in the larger global model (kmax* ).
For the typical RCM setup in which a continental-scale
domain is used, with a grid spacing less than 50 km, the
underestimation of kinetic energy over a month of simula-
tion may be tolerable and barely noticeable (less than 5%).

Figure 16. Fractional change in spectral power (DS(k)frac) versus log10(k) and wavelength, experiments
with the Kuo scheme compared to Follow-on 4. The quantity considered is the MFC multiplied by the
topographic gradient in the model. k in units of m�1. Wavelength in units of m.
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However, when the RAMS model was applied to a very
large domain or a coarse grid spacing (Dx > 50 km) on a
continental-scale domain is used, kinetic energy was under-
estimated for all k. RAMS does add value for k greater
than kmax* especially if there is sufficient surface boundary
forcing, such as variations in topography, and that forcing
can be resolved by the model. The sensitivity to the
surface forcing increased when the model domain size
increased, as shown by analysis of the integrated moisture
flux convergence. Though the focus here was on topogra-
phy, presumably similar effects may occur for any variable
surface field, like vegetation, soil moisture, or snow cover.
We also observed that changing the model convective
parameterization scheme increased the sensitivity to the
surface boundary.
[47] The first important question raised in the current

study is what causes the loss of large-scale kinetic energy
with time, absent interior nudging to the RCM? The most
obvious answer would seem to be the parameterized
horizontal diffusion. As seen in Table 6, because of the
dependence on grid spacing, the lower limit of the
diffusion coefficient will increase by about an order of
magnitude from a 50 km to 200 km simulation. This
increase in diffusion is necessary for numerical stability.
The loss of kinetic energy is a well known problem of
global models, and can be directly linked to diffusion. We
attempted to reduce the user-specified parameters (Cx and
KA) used in diffusion computation to their minimum
values as suggested by the RAMS Users Guide, but this
did not mitigate the kinetic energy loss. There is also the
likely possibility that, in addition to horizontal diffusion
some or all of the other one-dimensional column param-
eterizations are insufficient to retain value of the large
scale. These would include the parameterizations for
convection and/or cloud microphysics, radiation, and sub-
grid-scale mixing.

[48] As an example, let us consider the simulation of
large-scale precipitation in addition to a convective param-
eterization scheme. Accounting for large-scale precipita-
tion allows for supersaturation through explicit uplift of
moisture. The resulting heating increases the buoyancy of
uplifted air and enhances its upward vertical motion,
providing a mechanism for conversion of potential to
kinetic energy. Reliance entirely on the convection scheme
can also suppress large-scale vertical motions by increasing
static stability and further reduce the energy conversion.
An additional simulation (50 km, small grid) was executed
with a full cloud microphysical representation of large-
scale precipitation. DS(k)frac was computed according to
equation (16), and the results are shown in Figure 18. For
comparison, DS(k)frac from Figure 4 (the simulation with
only the convection scheme) is included for reference.
Accounting for the large-scale precipitation decreases the
loss of kinetic energy at the large scale, but does not
eliminate it. At kmax* the loss decreases from approximately
30% to 10%. Beyond kmax* the variability of kinetic energy
is substantially increased over using the convection scheme
alone. In spite of the better representation of large-scale
energy, though, the domain-averaged precipitation for this
simulation is overestimated and its spatial pattern is poor
compared to observations (not shown).
[49] The second important question is why there seems

to be a change in trend in DS(k)frac at kmax* . For k < kmax*
there is always a kinetic energy loss compared to the
reanalysis, irrespective of grid size or grid spacing. For
k > kmax* , this loss either decreases in magnitude or the
RCM begins to add value. Would there be a similar
dependence of kmax* on DS(k)frac irrespective of the
resolution of the GCM or reanalysis? If so, then it
would possible to determine a priori which wavelengths
the RCM would tend to degrade, absent some interior
nudging technique.

Figure 17. Same as Figure16 for experiments with the KF scheme.
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[50] Is there a way to alleviate the large-scale kinetic
energy loss shown in Figure 6 and yet preserve the value
added by the RCM at the small scale? Simply increasing the
number of nudging points would seem to be a solution, but
we found exactly the same loss of kinetic energy when the
number of nudging points was increased to ten. The albeit
crude, four-dimensional data assimilation technique of in-
ternal nudging may be applied, as demonstrated in Figure 9.
The results in Figure 9 are really nothing new and should
not be surprising in light of the results from studies using a
variety of other RCMs over the past decade [e.g., von Storch
et al., 2000; Sasaki et al., 1995; Giorgi et al., 1993b; Kida
et al., 1991]. These studies conclude that improvement in
RCM simulation can be achieved by selective nudging of
the large-scale, or a spectral nudging technique. This is
probably the best solution. G. Miguez-Macho et al.
(Spectral nudging to improve dowscaling over North
America using the Regional Atmospheric Modeling System
(RAMS), submitted to Journal of Climate, 2003) recently
demonstrated the utility of a spectral nudging technique for
RAMS (not yet incorporated in the standard release of the
model). Using a domain very similar to the small domain
used here, they found a large improvement in the June 2000
precipitation over the central United States solely due to
spectral nudging of the large-scale (defined as l >2500 km)
throughout the entire depth of the troposphere.
[51] Internal nudging such as we have used here, in which

all wavelengths are relaxed to the reanalysis solution, we
acknowledge, is far less desirable. In agreement with
Weaver et al. [2002], we found interior nudging tends to
weaken small-scale variability. This small-scale variability
may not only arise from the presence of topography, but
purely via local hydrodynamic variability. Examples include

frontogenesis, development of convective cloud bands, and
hurricane intensification. None of these examples requires
surface inhomogeneities for their development and none is
resolvable on the reanalysis grid. Absent detailed mesoscale
data or regional reanalyses, there is no way to quantify what
the value added may be. Weak internal nudging at a long
timescale may still preserve some of the small scale vari-
ability because most it occurs at a diurnal timescale or less.
For example, with the KF scheme in RAMS, the internally
nudged solution yields the model representation of precip-
itation, in terms of spatial distribution and variability.
Aside of areas of significant topography in western North
America, some areas of relatively homogeneous topogra-
phy, such as in the central and eastern United States, also
exhibited a low precipitation bias in the KF simulation in
which internal nudging was applied.
[52] What is really advocated with the use of spectral

nudging, or interior nudging for that matter, is the intro-
duction of some method of large-scale closure needed by
the LAM when run as a RCM. The use of spectral nudging
would retain the kinetic energy of the large-scale and let the
large-scale forcing reinitialize the fine-scale domain during
the model integration period. In the absence of four-
dimensional data assimilation, however, in order to retain
the kinetic energy requires that the model dynamics and
physics, as we have previously defined, generate the
energy. As we have already demonstrated, the one-dimen-
sional forms of the parameterized model physics are unable
to generate enough kinetic energy to retain that of the
reanalysis. This issue is likely endemic to all RCMs, since
each use similar dynamic and physical representations.
[53] To test this hypothesis, we suggest this experiment

(or similar) be repeated with other RCMs to demonstrate

Figure 18. Fractional change in spectral power (DS(k)frac) versus log10(k) and wavelength, for
column-average total kinetic energy. The red curve is the basic experiment 3 simulation (convection
scheme only), and the black curve is the same simulation with convection and explicit microphysics.
The dashed black line indicates kmax* , and the solid black line indicates kNyquist* . k in units of m�1.
Wavelength in units of m.
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whether this behavior exists. If this is the case, it implies
that only applying lateral boundary nudging using a Davies
[1976] nudging or similar technique is insufficient for
RCMs. A universal alternative needs to be implemented.
Previous work, with RAMS and other models, shows the
best alternative is a spectral nudging technique. The evi-
dence presented here suggests the domain should be nudged
for k < kmax* , where kmax* is dependent on the resolution of
the forcing data. Because there is such a large sensitivity to
the RCM experimental design, when comparing results
from different models it is necessary to ensure they use
the same grid size, grid spacing, and nudging options in
order to accurately assess the RCM-generated small scale
variability.
[54] The results here also challenge the traditional notion

of a grid setup for RCM dynamical downscaling. RAMS
was originally designed for simulation of short-term
weather events on a cloud-resolving scale. Recall that
‘‘short term’’ is defined as a time scale of days to a couple
of weeks. For these Type 1 experiments, a multiple nesting
paradigm is typically followed. The coarsest grid has the
same approximate horizontal scale as the reanalysis or
global model (Dx = 100–250 km). Within the coarsest
grid, there is an intermediate nested (mesoscale) grid (Dx =
10–50 km). Finer nested grid(s) (Dx < 10 km) may be
added to capture specific weather events, if so desired.
There are two reasons for such a model setup. First, it has
been assumed inappropriate to assimilate the reanalysis or
global model data at a scale much smaller than kNyquist* .
Second, it is typically computationally prohibitive to run a
cloud-resolving simulation for a very large grid. There
have been recent advances in computing power so that this
may be come widely feasible in the near future, though.
The multiple grid nesting approach works because the
model retains a large sensitivity to the initial conditions.
For example, even after a week of simulation the 200 km
grid spacing small domain still preserves approximately
80% of the reanalysis assimilated kinetic energy.
[55] The results here, though, suggest the multiple grid

nesting paradigm may not yield the most desirable results
when RAMS (or any other RCM) is run in a RCM mode. A
coarse grid of Dx = 100–200 km may introduce undesirable
weakening of large-scale atmospheric variability for a
model integration exceeding two weeks or so. A better
strategy may be to assimilate the reanalysis directly to the
mesoscale grid (a single grid paradigm). The global model
or reanalysis data is then driving the RCM for the scale in
which it retains value of the large scale. Bypassing the
coarser grid may also (1) save computing resources, and
(2) avoid the problem of using different parameterization
schemes, such as for convection, on different grids which
may introduce additional uncertainties in model simulation
results [e.g., Gochis et al., 2002]. However, caution must
be taken not to have too large a ratio of GCM grid spacing
to LAM grid spacing. The RAMS Users Guide suggests
that if this ratio exceeds a value of six, reflections may
occur at the lateral boundaries due to grid disparities.

5. Summary

[56] In this study, the value retained and added by
dynamical downscaling has been quantitatively evaluated

by considering the spectral behavior of RAMS in relation to
its domain size and grid spacing. To do this, a RAMS-RCM
simulation was compared with a regridded reanalysis at
each model analysis time for a set of six basic experiments.
At large scales, RAMS cannot restore the variability present
in the global model forcing data, and this loss is particularly
acute at the limit of the global model physically resolved
waves. As the grid spacing increases or domain size
increases, the underestimation of variability at large scales
worsens. The model simulated to regridded reanalysis
kinetic energy exhibits a logarithmic decrease with time,
which is more pronounced with larger grid spacing. This
underestimation of kinetic energy is not only linked to the
parameterized horizontal diffusion, but all the other one-
dimensional column parameterizations in the model. The
results here and past studies suggest the only solution to
alleviate this problem is to constrain the RCM with the
large-scale model (or reanalysis) values.
[57] Additional follow-on experiments investigated the

effect of internal nudging, enlarging the domain, the use
of a different convective parameterization, and a homoge-
neous surface boundary. These were designed mainly to
investigate the value added by RAMS at the small scale.
Weak internal nudging, as currently implemented in RAMS,
did improve the representation of the large-scale features,
but weakened the variability at small scales. The surface
boundary forcing appeared to be the dominant factor in
generating variability for small-scale features and exerts
greater control on the RCM solution as the influence of
lateral boundary conditions diminish. Changing the convec-
tion scheme increased the variability on the small scale and
improved the model generated precipitation. The influence
of the surface boundary forcing, then, is highly dependent
on the model experimental design, such as domain size,
nudging options, specification of the surface boundary
itself, and model parameterization schemes. Further studies
are, of course, necessary to confirm whether these behaviors
apply in general to all RCMs, but previous work suggests
they do. We believe it would be a very worthwhile exercise
to repeat these experiments with an assortment of different
RCMs, especially those which use a spectral nudging
technique.
[58] These RAMS simulations are of a Type 2 frame-

work, assuming a perfect model, so the same conclusions
will apply to RAMS-RCM applications with greater degrees
of freedom (Types 3 and 4). A good example for these latter
types is that of Jones et al. [1995] that demonstrated similar
results and conclusions for RCM simulations over Europe.
We find for this particular case, dynamical downscaling
with RAMS does not retain value of the large scale over and
above that which exists in the larger global model or
reanalysis. If the variability of synoptic features is under-
estimated or there is a consistent bias in the larger model, no
increased skill would be gained by dynamical downscaling
with RAMS. The utility of the RAMS-RCM, then, is not to
add increased skill to the large scale, rather the value added
is to resolve the smaller-scale features which have a greater
dependence on the surface boundary.
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