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ABSTRACT

Global climate models are challenged to represent the North American monsoon, in terms of its cli-

matology and interannual variability. To investigate whether a regional atmospheric model can improve

warm season forecasts in North America, a retrospective Climate Forecast System (CFS) model reforecast

(1982–2000) and the corresponding NCEP–NCAR reanalysis are dynamically downscaled with the

Weather Research and Forecasting model (WRF), with similar parameterization options as used for high-

resolution numerical weather prediction and a new spectral nudging capability. The regional model

improves the climatological representation of monsoon precipitation because of its more realistic repre-

sentation of the diurnal cycle of convection. However, it is challenged to capture organized, propagating

convection at a distance from terrain, regardless of the boundary forcing data used. Dynamical down-

scaling of CFS generally yields modest improvement in surface temperature and precipitation anomaly

correlations in those regions where it is already positive in the global model. For the North American

monsoon region, WRF adds value to the seasonally forecast temperature only in early summer and does

not add value to the seasonally forecast precipitation. CFS has a greater ability to represent the large-scale

atmospheric circulation in early summer because of the influence of Pacific SST forcing. The temperature

and precipitation anomaly correlations in both the global and regional model are thus relatively higher in

early summer than late summer. As the dominant modes of early warm season precipitation are better

represented in the regional model, given reasonable large-scale atmospheric forcing, dynamical down-

scaling will add value to warm season seasonal forecasts. CFS performance appears to be inconsistent in

this regard.

1. Introduction

Official seasonal forecasts for the United States are

issued by the National Centers for Environmental Pre-

diction (NCEP) Climate Prediction Center (CPC) within
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the National Oceanic and Atmospheric Administration

(NOAA). CPC uses a combination of statistical and

numerical modeling tools to generate their forecasts

(http://www.cpc.noaa.gov). These seasonal forecasts

are important for natural resource decision making

within the United States. In the arid southwest United

States, our main geographic area of concern, water

resources, agriculture, and ecosystems are particularly

sensitive to climate variability (e.g., Cayan et al. 1998;

Redmond and Koch 1991; Piechota and Dracup 1996;

Piechota et al. 1997). Skillful cool season seasonal fore-

casts are possible because atmospheric teleconnection

responses associated with El Niño–Southern Oscillation

(ENSO) can be resolved by global seasonal forecast

models (Livezey and Timonfeyeva 2008) and are present

as statistically robust features in observational data (e.g.,

Lau 1985; Ropelewski and Halpert 1986; Held et al.

1989; Tribbia 1991; McCabe and Dettinger 1999;

Ropelewski and Halpert 1986; Kiladis and Diaz 1989).

Cool season CPC seasonal forecasts are reliable enough

to be useful for informing water-related decision mak-

ing in the western United States (e.g., Schneider and

Garbrecht 2005). However, producing skillful operational

seasonal forecasts for the warm season, including the

North American monsoon system (NAMS), has been

more challenging. The warm season is no less important

for resource decision making, though, and the main con-

cerns at this time are water demand, severe weather, ex-

treme heat, drought, and wildfire (Ray et al. 2006).

Can the operational modeling component in the CPC

seasonal forecasts be potentially improved to provide

better NAMS seasonal outlooks? This component pres-

ently consists of the Climate Forecast System (CFS) gen-

eral circulation model at T62 resolution (about 200 km)

that generates ensemble members for operational fore-

casts each month. A CFS reforecast product (1981–2004)

has been recently created, with the primary intent to assess

the characteristic behavior and biases in the modeling

system (Saha et al. 2006). TheCFS represents large-scale

circulation anomaly patterns well in the winter (e.g., in

200- or 500-mb geopotential height) because of their

strong tie to remote Pacific SST forcing. Therefore, CFS

has demonstrable skill in forecasting precipitation for the

cool season, and the forecasting skill increases when a

greater number of ensemble members are used. However,

the NAMS in CFS is not represented as a salient clima-

tological feature, even at T126 resolution (Yang et al.

2009). The same is true for GCMs used for climate change

projection (Liang et al. 2008). Schemm et al. (2009) dem-

onstrated that an experimental version of the CFS model

at T382 resolution, with five ensemble members initialized

in late spring for the period 1982–2000, improves NAMS

climatology and interannual variability.

To represent the NAMS in a dynamic modeling sys-

tem, two conditions must be reasonably satisfied. First,

the mesoscale physical processes that actually lead to

precipitation must be present in the model simulation to

some degree. Coarse-resolution GCMs generally have

a poor representation of the terrain-forced diurnal cycle

of convection (e.g., Collier and Zhang 2007; Lee et al.

2007), which is highly related to the organized convec-

tion initiation and themain source of precipitation in the

North American monsoon region (Lang et al. 2007;

Nesbitt et al. 2008). The likely reasons whyGCMs fail to

represent it well are because of their poor representation

of terrain forcing, mesoscale features (e.g., low-level jets),

land–atmosphere coupling, and parameterized convec-

tive rainfall. Second, the model should reasonably rep-

resent the climatology and interannual variability of

the large-scale (or synoptic-scale) circulation during the

warm season. Most important for NAMS are the evolu-

tion and positioning of a monsoon ridge at mid- to upper

levels in the atmosphere, typically viewed at 500 mb

(e.g., Castro et al. 2001). As the monsoon ridge develops

in Mexico in late spring to early summer and moves

north and west into the southwest United States by mid-

to late summer, precipitation increases in the southwest

and decreases in the central United States (e.g., Higgins

et al. 1997; Barlow et al. 1998). The interannual vari-

ability of the monsoon ridge is influenced by Pacific SST

forcing in early summer (e.g., Castro et al. 2001, 2007b;

Grantz et al. 2007), reflected in the dominant mode of

early summer U.S. precipitation anomalies (Castro et al.

2009). The observed relationship that wet (dry) winters

are typically followed by a dry and delayed (wet and

early) summer monsoon in the Southwest is therefore

most likely explained by the existence of Pacific SST-

associated teleconnections in both the cool and warm

seasons (Castro et al. 2007b). Another important con-

sideration is intraseasonal precipitation variability as-

sociated with synoptic-scale disturbances (i.e., inverted

troughs and easterly waves) and tropical cyclones (e.g.,

Douglas andEnglehart 2007; Bieda et al. 2009; Corbosiero

et al. 2009). Severe, organized monsoon thunderstorms

require a combination of decreased atmospheric stabil-

ity, enhanced upper-level divergence and vertical wind

shear, and low-level moisture (e.g., Maddox et al. 1995).

The resulting ‘‘bursts’’ of precipitation are typically as-

sociated with westward propagating mesoscale convec-

tive systems originating on the Mogollon Rim or Sierra

Madre Occidental (e.g., Bieda et al. 2009).

Dynamical downscaling can be basically classified into

four types, according to Castro et al. (2005) and Rockel

et al. (2008): type 1, numerical weather prediction; type

2, retrospective historical climate simulation; type 3,

seasonal climate forecasting; and type 4, climate change
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projection. Castro et al. (2007a,b) used the Regional

Atmospheric Modeling System (RAMS) forced with

NCEP–National Center for Atmospheric Research

(NCAR) reanalysis data in a type 2 dynamical down-

scaling mode to perform retrospective simulations of

the warm season for the period 1950–2002. They ba-

sically showed, given ‘‘perfect’’ observed boundary

forcing with a reanalysis (type 2 dynamical downscal-

ing), that a regional climate model (RCM) can improve

the representation of the NAMS in terms of its clima-

tology and interannual variability. Their results with

respect to NAMS climatology are similar to those re-

ported for the North American Monsoon Model As-

sessment Project (NAMAP; Gutzler et al. 2005) and

other long-term simulations from other regional atmo-

spheric models (e.g., Cerezo-Mota et al. 2011). Higher-

order, prognostic dynamical downscaling types can thus

potentially improve the representation of NAMS from

the coarser-resolution driving global model, with two

provisos. First, the driving GCM must have a ‘‘reason-

able’’ representation of warm season large-scale circu-

lation in terms of climatology and interannual variability

(e.g., Pacific SST-associated teleconnection patterns).

Second, the RCMmust retain the large-scale variability

of the driving global model. To accomplish this, in-

terior nudging is needed for the RCM to maintain the

amplitude of synoptic-scale features such as ridges and

troughs (Castro et al. 2005; Rockel et al. 2008).

This study evaluates the use of the Weather Research

and Forecasting model (WRF) to dynamically down-

scale CFS reforecast data for the period 1982–2000. The

primary objective is to demonstrate the potential for an

improved NAMS warm season forecast capability, ad-

dressing one of the major scientific objectives of North

American Monsoon Experiment (NAME; Higgins et al.

2006; Higgins andGochis 2007). It complements existing

efforts within and/or supported by CPC to improve

NAM forecasts with both the aforementioned higher

T382 resolution of the CFS model and the Regional

Spectral Model (RSM), both currently available as ex-

perimental real-time products through the North Ameri-

can Monsoon Forecast Forum. A similar study by Chan

and Mishra (2011) recently concluded that the RSM is

similar to CFS in the representation of NAMS hydro-

climate, with problems in the representation of diurnal

and seasonal variability. The present work addresses

these similar issues with WRF, but with differing con-

clusions. The paper is organized as follows: Data and

methods are described in section 2, including a brief

description of WRF, the driving CFS model data, how

they are dynamically downscaled, and how the simula-

tions were analyzed and compared with observational

proxy data. Section 3 highlights the climatological

performance of the RCM. Anomaly correlations of sur-

face temperature and precipitation and the relative value

added of dynamical downscaling for NAMS seasonal

forecasting are presented in section 4. Relationships of

dominant precipitation modes to Pacific SST variability

are shown in section 5. Concluding points and further

discussion are in section 6.

2. Data and methods

a. Regional climate model with spectral nudging

TheRCM that used is theAdvancedResearch version

of the Weather Research and Forecasting model (ARW-

WRF, hereafter WRF), version 3.1 (Skamarock et al.

2005). Similar to other RCMs,WRF is designed primarily

to represent mesoscale and cloud-scale atmospheric

phenomena. The specific model physical parameteri-

zations used are consistent with those of the existing

WRF NWP system at The University of Arizona that

produces quasi-operational forecasts for Arizona during

the summer at grid spacing of 1.8 km. They includeWRF

single-moment three-classmicrophysics (Hong et al. 1998,

2004); Lin microphysics (Lin et al. 1983); Kain–Fritsch

cumulus parameterization (Kain and Fritsch 1993; Kain

2004); Goddard shortwave radiation (Chou and Suarez

1994); Rapid Radiative Transfer Model (RRTM) long-

wave (Mlawer et al. 1997); Eta surface layer (Janjic 1996,

2002);Mellor–Yamada–Janjic (MYJ) planetary boundary

layer (Janjic 1990, 1996, 2002); and the Noah land surface

model (Ek et al. 2003). RCM simulations are performed

for a single grid, contiguous U.S.–Mexico domain at

35-km grid spacing, nearly identical in domain structure

to that in Castro et al. (2007a) with similar parameter-

ized physics options.

It is becoming increasingly recognized in the use of

RCMs that there is a loss of synoptic-scale variability

from the driving GCM when the limited area model

is forced only at its lateral boundaries (e.g., Castro et al.

2005; Kanamitsu and Kanamaru 2007). The loss of

synoptic-scale variability can then affect how the RCM

represents features on the mesoscale, such as convec-

tive precipitation (e.g., Castro et al. 2005). An alterna-

tive approach to lateral boundary nudging in a buffer

zone (e.g., Davies 1976) is spectral nudging, in which

selective nudging at only the largest scales takes place

throughout the entire domain of the model for prog-

nostic fields (e.g., von Storch et al. 2000). Typically, the

nudging is confined to the upper levels of the atmo-

sphere through a weighting function. The variability of

the synoptic-scale circulation features may be maintained

during the model integration, while allowing the RCM

to still add value at the smaller scales and closer to the
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surface boundary. RCM simulations that use spectral

nudging have been shown to be more realistic in com-

parison with observations for type 2 dynamical down-

scaling (e.g., von Storch et al. 2000; Miguez-Macho et al.

2005; Rockel et al. 2008). The spectral nudging method

as described in Miguez-Macho et al. (2005), as recently

adapted for use in WRF, is used to nudge the model at

scales larger than 4 times the grid spacing of the driving

global model or reanalysis, approximately 1000 km for

T62 resolution. Specifically, the temperature, winds, and

geopotential height are nudged.

b. Dynamical downscaling of retrospective seasonal
forecasts and global reanalyses

Two types of data are dynamically downscaled. The

first is CFSmodel version 1 ensemble members from the

reforecast (Saha et al. 2006) at T62 resolution, and these

simulations are henceforth referred to as WRF-CFS.

In this study, the base period of 1982–2000 is used to

establish a WRF-CFS RCM climatology and evaluate

performance of the modeling system. Twice-daily (0000

and 1200 UTC) CFS reforecast data were obtained from

the NCEP mass storage system. We had nine ensemble

members per year available for dynamical downscaling.

These consist of three sets, each initialized from the

NCEP global reanalysis at the beginning of the preceding

April, May, and June, respectively, as described in Saha

et al. (2006). It was not possible to obtain the complete

set of CFS ensemble members for each monthly sea-

sonal forecast initialization or the CFS data, and this

will adversely affect the statistical robustness of the

WRF-CFS simulations. Initial WRF model soil mois-

ture is specified from the North American Regional

Reanalysis (NARR;Mesinger et al. 2006). Use of NARR

soil moisture helps to minimize the problematic soil

moisture spinup issue in RCM simulations (e.g., Liston

and Pielke 2000) as both NARR and our WRF simula-

tions use the identical land surface model (Noah) and

roughly equivalent spatial resolution. As will be shown,

CFS data used for the downscaling are adequate to ad-

dress the question of whether WRF can improve upon

the CFS model representation of climatology and inter-

annual variability, thus evaluating the utility of type 3

dynamical downscaling for theNorthAmericanmonsoon.

The WRF-CFS simulations are compared with equiv-

alent type 2 dynamical downscaling using the NCEP–

NCAR reanalysis as boundary forcing. These simulations

henceforth referred to as WRF-NCEP. The WRF-NCEP

simulation is identical in principle to those described in

Castro et al. (2007a) with RAMS. The major difference is

the WRF-NCEP simulation is a continuous integration

starting from the beginning of 1979 (or start of NARR)

through 2000, also initialized with NARR soil moisture.

We note that the NCEP–NCAR reanalysis may not be

the best quality reanalysis for the type 2 dynamical down-

scaling. Cerezo-Mota et al. (2011) dynamically downscaled

both the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

and the NCEP–NCAR reanalysis data with the Hadley

Centre Regional Model version 3 with Providing Re-

gional Climates for Impacts Studies (PRECIS) physics

(HadRM3P) in the North American monsoon region.

They demonstrated that model simulated precipitation

in an Arizona–New Mexico region was adversely im-

pacted by a large deficit of moisture in the Gulf of

Mexico in those simulations using the NCEP–NCAR

reanalysis as boundary forcing, at least in the context

of their RCM simulation design. However, they also con-

cluded that either downscaled reanalysis appropriately

captured monsoon interannual variability. This latter

conclusion is consistent with the analysis of NAMS

interannual variability in the RAMS simulations with

NCEP–NCAR reanalysis boundary forcing described in

Castro et al. (2007b), and thus provides the justification

for the similar type 2 dynamical downscaling experiments

done here with WRF. It is actually the more relevant

conclusion from Cerezo-Mota et al. (2011) that bears on

this work, since seasonal predictability is strongly linked

to Pacific SST forcing, as we will show later.

c. Observational proxy data for model performance
evaluation

Several commonly and widely available observational

proxy data products are used to compare with GCM and

RCM simulations, mostly consistent with Saha et al.

(2006). The NCEP–NCAR reanalysis (Kalnay et al. 1996)

is used for comparison of large-scale circulation fields

in the CFS global model simulation in terms of 500-mb

geopotential height. Spectral nudging ensures these

fields are nearly identical in the RCM. Observed surface

temperature data are from the University of Delaware

(UDel) dataset at a resolution of 0.58 (Shepard 1968;

Willmott et al. 1985; Legates andWillmott 1990;Willmott

and Matsuura 1995), and these are compared with the

2-m surface air temperature generated by WRF. Ob-

served precipitation data are considered with a new

National Oceanic and Atmospheric Administration

(NOAA)-developed precipitation dataset (P-NOAA) at

0.58 resolution that covers all of North America, pro-

vided to us byDrs. Russ Vose and Ed Cook. P-NOAA is

similar to the Precipitation-Elevation Regressions on

Independent Slopes Model (PRISM) product (Daly

et al. 1994), which considers the dependence of eleva-

tion on precipitation. Gridded precipitation fields were

developed using data from 12 710 precipitation stations.

U.S. andCanadian datawere from their respective national
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archives (the National Climatic Data Center, the Mex-

ican Meteorological Service, and Environment Can-

ada). Climatologically aided interpolation was applied

to interpolate the irregularly spaced station data into

0.58 3 0.58 grid spacing data using latitude, longitude,

and elevation as predictors, and involves inverse dis-

tance weighting approach for computing precipitation

and temperature anomalies (Willmott et al. 1985;Willmott

andMatsuura 1995; Hutchinson et al. 2009). To compute

anomaly correlations, both model simulated and proxy

observed temperature and precipitation have been nor-

malized at each grid point on their respective grids. The

normalization of temperature simply considers a nor-

mal distribution for a defined time period. Precipitation

anomalies are defined using the standardized precipi-

tation index (SPI;McKee et al. 1993). The SPI technique

transforms a given precipitation anomaly into a nor-

malized value, assuming the distribution of precipitation

for a defined period fits a gamma distribution. The pa-

rameters of the gamma distribution (a and b) for CFS

and WRF-CFS precipitation are computed from the

climatological base period of 1982–2000, and for WRF-

NCEP precipitation using the climatological base period

of 1979–2000. SPI normalizes the precipitation data

to implicitly account for precipitation bias in a given

modeling system when comparing results to observa-

tions, accounting for the typical nonnormality of pre-

cipitation distributions. Castro et al. (2009) showed that

the dominant spatial patterns in observed warm season

SPI in North America have strong statistical relationships

with Pacific SST forced atmospheric teleconnections,

the principal driver of NAMS variability in summer.

Dominantmodes of SPI variability are determined using

rotated EOF (REOF) analysis (e.g., Richman 1986) and

these are linearly regressed on large-scale atmospheric

circulation anomalies and global sea surface tempera-

ture anomalies.

d. Anomaly correlations at each grid point and
NAME precipitation zones

A Pearson correlation (e.g., Wilks 2006) of the ob-

served and model-simulated precipitation and surface

temperature anomalies is considered for early summer

[June–July (JJ)] and late summer [August–September

(AS)] periods for the entire regional model domain

of the contiguous United States and Mexico. As men-

tioned, the teleconnectivity of the NAMS to Pacific

SSTs diminishes in the late summer, so the consideration

of the traditional three-month average [June–August

(JJA)], as is customary in the current NCEP seasonal

forecast operational products, would tend to wash out

any potentially predictive Pacific SST signal on early

warm season precipitation. Before the computation of

the anomaly correlation, observed proxy temperature

and precipitation data have been regridded to the native

resolution of the GCM or RCM, as this much better

highlights the impact of enhanced resolution of the

terrain in the RCM and any associated value added. The

resolution of the RCM and the observed temperature

and precipitation data are roughly the same, so there

is little impact of the regridding on the computation of

anomaly correlations at the RCM grid spacing of 35 km.

Subregional precipitation zones were defined consistent

with those used in the NAME Forecast Forum (Fig. 1).

FIG. 1. NAME precipitation zones (1–8), as originally shown in the final report of the 10th

NAME Science Working Group Meeting.
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These zones roughly reflect the regional-scale contrasts

in the climatology and interannual variability of NAMS

precipitation (e.g., Comrie and Glenn 1998). The core

monsoon region, which exhibits the classical NAMS

climatological characteristics and where most observa-

tional data was collected during NAME, includes the

following zones: 1) approximately central Sonora and

Sinaloa extending eastward to the crest of the Sierra

FIG. 2. Monthly average 500-mb geopotential height (m) for the period June through September from the NCEP–

NCAR reanalysis and nine-member CFS ensemble (1982–2000). Contour interval is 20 m.
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Madre Occidental and 2) northern Sonora and most of

southern Arizona. Owing to their location west of the

Continental Divide, these two zones have the same

response in the interannual variability of warm season

precipitation in relation to Pacific SST variability, with

typically a weaker and later (stronger and earlier) mon-

soon precipitation during El Niño and a positive phase

of Pacific decadal variability (PDV) (La Niña, negative

PDV) conditions (see Castro et al. 2007b, their Fig. 8).

The anomaly correlation for the eight NAME preci-

pitation zones is determined as the spatial average of the

anomaly correlation maps within the given area.

3. Highlights of warm season climatology in WRF-
CFS simulations

Before considering seasonal forecast performance

of CFS versus WRF-CFS, it is necessary to first es-

tablish if the seasonal forecast RCM simulations adds

value in terms of representing the climatology of the

NAMS. We present some highlighted results to dem-

onstrate the improved representation of precipitation in

the RCM, consistent with Castro et al. (2007a). Figure 2

shows the monthly evolution of the monsoon ridge at

500 mb in the NCEP reanalysis and CFS model en-

semble members for the period June to September.

Both reanalysis and CFS show a well-defined monsoon

ridge that develops in June in northern Mexico, ad-

vances north and westward toward the southwestern

FIG. 3. Average annual warm season (JJAS) accumulated pre-

cipitation (mm) in the NAME precipitation zones for the period

1982–2000, considering CPC observed precipitation (blue), CFS

GCM model (dark red), and WRF dynamically downscaled CFS

ensemble members (light green).

FIG. 4. Monthly average precipitation (mm day21) during the warm season (JJAS) for the period 1982–2000, considering (left) WRF-

NCEP and (middle) WRF-CFS for NAME precipitation zones 1 and 2 of the core monsoon region. (right) Same information considering

all NAME precipitation zones.
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United States in July and August, and then retreats back

intoMexico by September, similar to Castro et al. (2001,

their Fig. 6). Although the CFS model gives a good

representation of the climatology of the large-scale cir-

culation, it has a poor representation of NAMS rainfall.

The annual warm season [June–September (JJAS)]

average precipitation for the NAMEprecipitation zones

is shown in Fig. 3. CFS consistently underestimates

NAMS precipitation overall, but especially so in zones

1 and 2, as the CFS precipitation only produces 10%–

20% of the actual total in Sonora and Arizona. WRF-

simulated precipitation ismuch improved, and quite close

to the climatological value of about 200 mm in zone 2.

The average monthly precipitation rate for the core

monsoon region and all NAME precipitation zones

(Fig. 4) shows the expected rapid increase in precipitation

in both WRF-NCEP and WRF-CFS during monsoon

onset from June to July, although their precipitation to-

tals slightly differ during July andAugust. Figure 5 shows

the RCM-simulated climatological precipitation bias for

WRF-NCEP and WRF-CFS. Both types 2 and 3 WRF

dynamical downscaling overestimate precipitation di-

rectly over complex terrain, such as the Rocky Moun-

tains or SierraMadre. Precipitation is underestimated in

zones where more organized, propagating convection

accounts for the majority of warm season rainfall, such as

west of the Sierra Madre or east of the Rockies in the

southern Great Plains (e.g., Carbone et al. 2002). As

mentioned, it has been noted that the NCEP reanalysis

may underestimate atmospheric moisture over the Gulf

of Mexico (Cerezo-Mota et al. 2011), which may con-

tribute to the negative precipitation bias in the central

United States in the type 2 simulation. Since the same

problem exists in the type 3 simulation, though, it may

also reflect a weakness of the regional model to repre-

sent the organized convection that is independent of

the boundary forcing data. As we will discuss later, the

problem can be alleviated with a modified convective

trigger function in the Kain–Fritch convective parame-

erization. The representation of mesoscale convective

systems downwind of complex terrain appears to be a

systematic deficiency of RCMs at this spatial scale (e.g.,

Gao et al. 2007) and will necessarily affect how it rep-

resents interannual precipitation variability, as we will

show in the next section.

The RCM is able to add value to the simulation of

NAMS precipitation because it improves the represen-

tation of physical processes on the mesoscale. The di-

urnal cycle of convection is caused by the differential

heating and cooling of the mountains, as compared to

the surrounding atmosphere, drawing air up mountain

slopes and forming convective clouds over the mountain

tops. Figure 6 shows the diurnal cycle of precipitation

(mm h21) for early (JJ) and late (AS) summer, respec-

tively, at the four RCMoutput times of 0000, 0600, 1200,

and 1800 UTC. In the western United States and Mex-

ico, precipitation correctly peaks in the mid- to late af-

ternoon (1800–0000 UTC), is generally more intense

at higher elevation, and increases during late summer.

There is also a noticeable maximum in nighttime pre-

cipitation in the northern Great Plains (0600 UTC),

correctly reflecting the presence of the more organized

convection there (e.g., Carbone et al. 2002). Figure 7

shows the monthly evaluation of the average low-level

moisture flux (below 850 mb) in WRF-CFS. The Great

Plains low-level jet is strongest in the early part of the

summer and then decreases in strength in August, and

the regional model shows the extension of the low-level

jet into the Gulf of Mexico and Caribbean, similar to

Castro et al. (2007a, their Fig. 8). Moisture flux in the

FIG. 5. Averagewarm season (JJAS)precipitation bias (mm day21)

for (top) WRF-NCEP and (bottom) WRF-CFS (P-BIAS 5 RCM

minus P-NOAA observation). Red (blue) colors indicate preci-

pitation overestimation (underestimation) by WRF.
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zones 1 and 2 increases in late summer with the ad-

vance of the monsoon, but this moisture flux appears

to be associated mainly with the diurnal cycle of convec-

tion along the Sierra Madre Occidental, as the monthly

average moisture flux vectors are oriented more per-

pendicular, and not parallel, to the coast in northern

Mexico and there is not a local maximum in moisture

flux centered in the Gulf of California. The incorrect

representation of Gulf of California low-level jet, cou-

pledwith the problems in representing precipitation that

occurs farther away from complex terrain as shown in

Fig. 5, demonstrates an inability of WRF-CFS to ad-

equately capture the sources of synoptic-scale intra-

seasonal variability that would cause moisture surges

FIG. 6. Average precipitation rate (mm h21) in WRF-CFS simulations in (left) early (JJ) and (right) late summer

(AS) for 0000, 0600, 1200, and 1800 UTC, as labeled.

8220 JOURNAL OF CL IMATE VOLUME 25



in Gulf of California and outbreaks of severe organized

NAMS convection. A similar deficiency has been re-

ported for the high-resolution experimental CFS T382

simulations and also exists in the WRF-NCEP simula-

tions (not shown).

4. Temperature and precipitation anomaly
correlations: Early versus late warm season

Given that the use of a regional model improves

the climatological representation of the NAMS from the

driving global CFS model, does it also improve on the

anomaly correlation of temperature and precipitation?

As mentioned, the anomaly correlations (sanom) are

considered for the early part (JJ) and late part (AS) of

the warm season, as it is known a priori that precipi-

tation variability behaves very differently with respect

to Pacific SST forcing as the summer progresses. In this

section sanom includes the original reanalysis and CFS

model and the corresponding type 2 and type 3 dynam-

ically downscaled WRF results. We show the tempera-

ture and precipitation anomaly correlations (sanomT and

sanomP) respectively in Figs. 8 and 10, considering early

summer (JJ) versus late summer (AS); Figs. 9 and 11

show the difference in sanomT and sanomP, respectively,

between the driving reanalysis or global model and the

dynamically downscaled WRF model products. The

differences in sanom (or Dsanom) in these figures are

gridded to both the resolution of the global model and

the regional model, for comparison. Figure 12 shows the

same information for precipitation as Figs. 9 and 11,

zooming in on the NAME tier 2 region. For reference,

a locally statistically significant sanom at the 90% level,

using a t test, is approximately 0.37 or greater.

The values of sanomT for the NCEP reanalysis and

WRF-NCEP, not surprisingly, are high (above 0.6) nearly

everywhere in the model domain throughout the warm

season, except in central Mexico probably owing to

uncertainties in the UDel dataset with elevation (top

and lower middle panels in Fig. 8). There is very little

difference in sanomT between NCEP and WRF-NCEP

(panels in top two rows of Fig. 9). Considering CFS in JJ

(upper middle panel on left), the highest sanomT occurs

in the Southwest. The RCM generally tends to retain

or improve on sanomT in those locations where it is al-

ready positive in CFS and worsens it where it is already

 
FIG. 7. Monthly average integrated low-level moisture flux

(g kg21 m s21) from surface to 850 mb from WRF-CFS simula-

tions. Vector length and magnitude of moisture flux as indicated.
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FIG. 8. Anomaly correlation of normalized temperature (sanomT) for (left) early (JJ) and (right) late summer (AS).

Normalized observedUDEL temperature anomalies correlated with those from corresponding (top) NCEP–NCAR

reanalysis, (upper middle) CFS model, (lower middle) WRF-NCEP, and (bottom) WRF-CFS. The magnitude of

sanomT is indicated by the color bar. Results shown at native model resolution indicated on the plots.
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negative in CFS (bottom row of panels of Fig. 8 and

bottom two rows of panels in Fig. 9). However, owing to

the use of spectral nudging, the continental-scale spatial

pattern of sanomT does not change much in the RCM.

During AS, sanomT is generally much lower everywhere

in CFS, and even negative in the central United States

(upper middle panel on right in Fig. 8). Notably, the

statistically significant JJ sanomT present in the South-

west vanishes during AS. Although the ASRCM sanomT

is also worse than JJ, it is still improved from CFS, es-

pecially in the northern Rockies and the Southeast.

Values of sanomP for early versus late summer are

considered in Fig. 10. Dynamical downscaling of the

NCEP reanalysis tends to increase sanomP overall within

FIG. 9. (top),(upper middle) WRF-NCEP minus NCEP difference in sanomT for (left) early (JJ) and (right) late

summer (AS), gridded to the respective resolutions of each data. (bottommiddle),(bottom) As above, but forWRF-

CFS minus CFS.
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the regional model domain, at least in the early part of

the warm season (upper panels in Fig. 11). Zooming in

on the NAME tier 2 region (Fig. 12), the highest relative

sanomP in the WRF-NCEP simulations occurs on the

crest of the mountains, such as the Mogollon Rim in

Arizona (in range of 0.2 to 0.4) and Sierra Madre Oc-

cidental in northwestern Mexico (greater than 0.6), and

the regional model increases sanomP in these areas. The

value of sanomP then decreases rapidly in the lowland

desert regions toward the Colorado River valley and

Gulf of California, becoming worse than NCEP. The

spatial differences in sanomP in the WRF-NCEP simula-

tions have a very important implication for higher orders

of dynamical downscaling such as seasonal forecasting.

FIG. 10. As in Fig. 8, but for sanomP for early and late summer. Observed SPI derived from P-NOAA data.
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Even downscaling ‘‘perfect’’ observations from an at-

mospheric reanalysis, the RCM at 35-km grid spacing is

still challenged to represent the interannual variability

of organized, propagating convection that causes the

majority of monsoon precipitation away from complex

terrain, consistent with Gao et al. (2007).

Comparing sanomP for CFS versus WRF-CFS (upper

middle and lower panels, respectively, in Fig. 10), like

for sanomT, the RCM generally tends to retain or

slightly increase sanomP where it is already of positive

sign in CFS and worsen it where it is already of negative

sign in CFS. Also, the continental-scale spatial pattern

of the sanomP in WRF-CFS is consistent with CFS.

Considering the NAME tier 2 region in Fig. 12, as with

WRF-NCEP the highest values of sanomP in WRF-CFS

occur in association with complex terrain in JJ, along

FIG. 11. As in Fig. 9, but for sanomP for early and late summer.
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the crest of the Sierra Madre Occidental and Mogollon

Rim in Arizona, and they rapidly decrease westward

away from the terrain. The largest increases in sanomP

in WRF-CFS in the tier 2 region occur west of the

continental divide in Arizona during JJ. That strongly

contrasts with areas east of the continental divide in

New Mexico, where WRF-CFS worsens the sanomP.

Outside of the NAMS region, the highest sanomP in

JJ occurs in the northern Great Basin, though there

is little difference between CFS and WRF-CFS.

In AS, the positive sanomP in the NAMS tier 2 re-

gion quickly deteriorates from JJ, reflecting the large

difference in potential NAMS predictability from

the early to late part of the warm season. Values of

sanomP in CFS and WRF-CFS also generally decrease

elsewhere.

The early and late summer sanomT and sanomP are

shown for the NAME precipitation zones in Tables 1

and 2 , consistent with Figs. 8 and 10. Values of sanomT

and sanomP that are statistically significant at the 90%

FIG. 12. (left),(middle left)As in Fig. 10, but considering the same geographic areas considered in Fig. 1, corresponding to theNAME tier 2

region. (middle right),(right) As in Fig. 11, but for the NAME tier 2 region.
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level are denoted in bold shading.We consider theRCM

to add value if the RCM sanom is greater than that of

the driving global model and a statistically significant

sanom is retained (denoted with an asterisk); neither

add value or take away value if sanom of the RCM is

less than that of the driving global model, but its sta-

tistical significance is retained (shown in boldface);

and take away value if sanom of the RCM is both less

than that of the driving global model and statistical

significance is lost (denoted with a superscript X). Con-

sidering temperature in Table 1, WRF-NCEP adds or

retains value for all of the NAME zones in early and late

summer. WRF-CFS adds value to sanomT in four of the

eight zones in early summer, including zone 2 (Arizona)

in the core monsoon region, and only takes away value

in zone 6 (Baja California). In late summer (AS), there is

no statistically significant sanomT in either CFS orWRF-

CFS in any of the NAME zones. Considering precipi-

tation, WRF-NCEP adds or retains value in four of the

eight NAME zones. For the coremonsoon region zones

1 and 2, WRF-NCEP consistently has a lower sanomP

than NCEP throughout the warm season. This loss of

value likely reflects the failure of the regional model to

represent organized, propagating convection west of

the Sierra Madre and Mogollon Rim, as we discussed

earlier in reference to Fig. 12. WRF-CFS precipitation

is not adding value above that of CFS for any of the

NAME zones throughout the summer, by our criteria.

It is worth noting, though, that there are slight im-

provements in the sanomP in the core monsoon region

(zones 1 and 2) in early summer. The performance of

WRF-CFS RCM is qualitatively similar to the high-

resolution experimental T382 CFS reported in Schemm

et al. (2009) for NAME precipitation zones. They

noted slight improvements in sanomP from T126 reso-

lution, especially in those zones where it was already of

positive sign in the coarser model, and a general de-

crease in sanomP in late summer. The SPI time series

used to compute the precipitation anomaly correlation

for zones 1 and 2 (Fig. 13) shows that forecast SPI

anomaly of WRF-CFS is highly correlated with CFS

(0.78 for zone 1 and 0.56 for zone 2). So the RCM mod-

ulates themagnitude of the forecast precipitation anomaly

from the global model, but does not change the large-

scale circulation patterns that would lead to abnormally

wet or dry conditions.

TABLE 1. Early summer (JJ) and later summer (AS) tempera-

ture anomaly correlations (sanomT) for NAME precipitation

zones, considering NCEP, WRF-NCEP, CFS, and WRF-CFS.

Statistically significant correlations at the 90% level are in bold

shading. For WRF simulations, an asterisk indicates that the dy-

namically downscaled result is statistically significant and better

than the driving coarser-resolution data; boldface indicates that

the dynamically downscaled result is worse than the driving coarser-

resolution data and statistical significance is retained; and a super-

script X indicates that the dynamically downscaled result is worse

than the driving coarser-resolution data and statistical significance

is lost.

NAME precipitation zones: Early summer (JJ) temperature

anomaly correlations

NCEP WRF-NCEP CFS WRF-CFS

Zone 1 0.48 0.45 0.17 0.11

Zone 2 0.84 0.85* 0.33 0.53*
Zone 3 0.72 0.79* 0.36 0.39*

Zone 4 0.45 0.61* 0.26 0.24

Zone 5 0.10 0.43* 0.23 0.13

Zone 6 0.45 0.49* 0.38* 0.33X

Zone 7 0.83 0.87* 0.44* 0.55*

Zone 8 0.87 0.90* 0.45* 0.66*

NAME precipitation zones: Late summer (AS) temperature

anomaly correlations

NCEP WRF-NCEP CFS WRF-CFS

Zone 1 0.51 0.40 0.09 20.07

Zone 2 0.84 0.82 20.12 20.07

Zone 3 0.74 0.80* 20.11 0.03

Zone 4 0.66 0.61 0.11 0.00

Zone 5 0.36 0.37* 20.18 20.14

Zone 6 0.20 0.26 0.11 0.05

Zone 7 0.83 0.81 20.27 0.08

Zone 8 0.86 0.83 20.08 0.07

TABLE 2. As in Table 1, but for anomaly correlation of early and

late summer precipitation (sanomP).

NAME precipitation zones: Early summer (JJ) SPI anomaly

correlations

NCEP WRF-NCEP CFS WRF-CFS

Zone 1 0.48 0.29X 0.09 0.23

Zone 2 0.43 0.37 0.07 0.13

Zone 3 0.40 0.57* 20.04 0.03

Zone 4 0.45 0.68* 0.40 0.29

Zone 5 0.15 0.26 0.23 0.19

Zone 6 0.17 0.19 0.11 0.09

Zone 7 0.38 0.26X 20.05 0.11

Zone 8 0.58 0.56 0.18 0.20

NAME precipitation zones: Late summer (AS) SPI anomaly

correlations

NCEP WRF-NCEP CFS WRF-CFS

Zone 1 0.33 0.23 0.06 0.10

Zone 2 0.41 0.35X 0.10 20.03

Zone 3 0.46 0.51* 20.02 20.04

Zone 4 0.39 0.48* 0.04 20.16

Zone 5 0.01 0.34 20.12 20.04

Zone 6 0.37 0.40* 0.06 0.10

Zone 7 0.54 0.26X 0.33 0.36

Zone 8 0.56 0.46 0.24 0.26
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5. Interannual variability in relation to Pacific SST
associated teleconnections

Given the time-varying influence of Pacific SST forcing

on summer precipitation, the 500-mb height anomaly

correlation between CFS and the NCEP–NCAR re-

analysis (Fig. 14) not surprisingly shows a rapid decrease

in the ability of CFS to represent the observed large-scale

circulation in early versus late part of the warm season in

theUnited States, with the highest anomaly correlation in

the United States occurring in the far western United

States in JJ, near 0.4. The performance of CFS with re-

spect to representing interannual variability of the large-

scale circulation during the warm season is very similar

to other GCMs (Liang et al. 2008).

As ENSO PDV is the dominant influence on the

continental-scale distribution of NAMS precipitation

during the early part of the warm season, how is this

represented in CFS and WRF-CFS simulated precipi-

tation in comparison with precipitation observations?

WRF-NCEP is considered equivalent to observations for

determination of the dominant modes warm season pre-

cipitation variability. Figures 15 and 16 show, respectively,

the first two REOF modes of JJ SPI in WRF-NCEP,

which explain slightly less than 30% of the total JJ SPI

variance, and their relationship with the corresponding

500-mb height anomalies and global SSTA, as the re-

gression on the principal component. The two dominant

modes both reveal the expected reverse relationship

between early warm season precipitation in the central

U.S. and NAMS region and teleconnection patterns in

the 500-mb height anomalies related to monsoon ridge

positioning. The first mode is associated more with PDV

and the second mode more associated with ENSO, as

indicated by the patterns of SSTA, consistent with Castro

et al. (2007b). An identical analysis was performed on

the equivalent JJ SPI from CFS and WRF-CFS. Figures

17 and 18 , respectively, show the statistically significant

(at the 95% level), most highly correlated JJ SPI modes

from CFS andWRF-CFS and their relationship with CFS

FIG. 13. Early summer (JJ) and late summer (AS) SPI interannual variation fromP-NOAA,NCEP–NCAR reanalysis,WRF-NCEP, CFS,

and WRF-CFS. The correlations between these data are indicated on the plot.
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500-mb height anomalies and global SSTA. Comparing

CFS versus WRF-CFS, the RCM substantially improves

the ability to represent the influence of ENSO-PDV

variability on early warm season precipitation, as WRF-

CFS shows a more well-defined reverse relationship

between central U.S. and NAMS precipitation and a

stronger relationship to 500-mb height anomalies and

Pacific SSTA. The teleconnection pattern forWRF-CFS

in Fig. 18 reflects more clearly the influence of ENSO on

monsoon ridge positioning, and not PDV, and is very

similar to Fig. 5 in Castro et al. (2007b). A similar analysis

was performed for AS (not shown). We omit showing

those results because of the diminished influence of

Pacific SST on NAMS and relatively poorer perfor-

mance of CFS in representing the large-scale atmo-

spheric circulation over the United States at this time

(Fig. 14, lower panel). Even though CFS andWRF-CFS

both represent the early summer atmospheric circula-

tion and precipitation response to Pacific SST as a sta-

tistically distinguishable mode of variability, this does

not necessarily mean CFS can always give a good deter-

ministic warm season seasonal forecast. We will illus-

trate this point in the next section, in specific reference

to seasonal forecasts for 1984 and 1993.

6. Concluding points and discussion

Can an RCM improve seasonal forecasts of the North

American monsoon? The evidence presented herein

suggests that the answer to this question is a qualified

yes, but with several caveats. To represent the NAMS

as a salient climatological feature within a dynamical

modeling system, a model resolution of at least tens

of kilometers is required. We have shown that this is

the case for type 2 and type 3 dynamical downscaling.

At this resolution, the mesoscale processes that cause

thunderstorms are reasonably represented, particularly

the diurnal cycle of convection. However, there are spa-

tially coherent differences in the performance of the

RCM-simulated precipitation within the NAME tier 2

region, both climatologically and interannually. Even

with type 2 dynamical downscaling, an RCM is still quite

challenged to represent the propagating, more orga-

nized convection that causes monsoon precipitation at

a distance frommountainous terrain, westward from the

Sierra Madre and Mogollon Rim.

In terms of representing interannual variability of pre-

cipitation and temperature anomalies during the warm

season, the WRF-CFS simulations tend to slightly in-

crease sanom in those geographic areas where it is al-

ready positive in CFS but does not significantly change

its overall spatial pattern. Both CFS and WRF-CFS

perform better in forecasting temperature and precipi-

tation in the western United States and NAMS region

during the early part of the warm season (JJ), owing to

the relatively stronger teleconnectivity between Pacific

SSTs and the large-scale atmospheric circulation over

North America at this time. Using our objective criteria,

FIG. 14. 500-mb height anomaly correlations between CFS and the NCEP–NCAR reanalysis

in (top) early (JJ) and (bottom) late (AS) parts of the summer. Shaded is local significance, and

line contour is correlation between CFS and NCEP–NCAR reanalysis.
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WRF-CFS generally adds value to seasonally forecast

temperature anomalies in the NAME tier 2 region in JJ

for this reason. Although WRF-CFS seasonally forecast

precipitation anomalies in the core monsoon region are

also slightly higher than CFS in JJ, they are not statis-

tically significant.

In the nine-member ensemble used for this study,

CFS represents the early warm season atmospheric tele-

connection response associated with ENSO well, but not

PDV. That may account for the relatively poor per-

formance of CFS and WRF-CFS in the central United

States, where wet or dry conditions in summer are sub-

stantially influenced by PDV there (e.g., Schubert et al.

2004). For geographic locations where Pacific SST

variability has a greater influence on monsoon rainfall,

as indicated by the dominant spatial loadings of early

warm season SPI, an RCM may potentially add some

value for seasonal forecasting. Specifically, for the core

NAMS region, where WRF-CFS correctly represents

a dry (wet) monsoon in association with El Niño–like (La

Niña–like) conditions in the Pacific, sanomT and sanomP

do increase from the driving CFS model. As Pacific

SST teleconnectivity to North American climate di-

minishes in late summer, so too do sanomT and sanomP

over the entire RCM domain, but especially in the

NAMS region.

There is also the question of how the specification of

the initial soil moisture in the WRF-CFS simulations

FIG. 15. (top) First REOF of early warm season (JJ) WRF-NCEP SPI, shown as the SPI

regression on the principal component (PC) with variance explained. (middle) Corresponding

PC correlation on normalized 500-mb geopotential height anomalies from NCEP–NCAR re-

analysis. (bottom) Corresponding PC correlation on observed SSTA
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may influence the seasonally forecasted precipitation.

Similar to Castro et al. (2007a), we used a predeter-

mined soil moisture analysis (from NARR). To test the

sensitivity to this initial soil moisture specification, we

conducted an additional WRF-NCEP experiment for

the summer of 1993, a year that has been heavily studied

in terms of soil moisture feedback processes in the

central United States. The additional experiment was

initialized with NARR soil moisture at the beginning of

May and then compared to the continuous run WRF-

NCEP simulation described earlier in section 2.We found

that the greatest precipitation differences occurred in the

region of the central United States where flooding con-

ditions occurred, consistent with Pan et al. (1996) and

Hong and Pan (2000), that suggest the effect of soil

moisture feedback is locally confined (results not shown).

The continental-scale spatial pattern of warm season

precipitation, tied to Pacific SST forcing, though, was

quite similar between the two simulations. Similar sensi-

tivity to the initial soil moisture would thus be expected

with the WRF-CFS simulations.

Realizing the full potential to improve NAMS sea-

sonal forecasts with a dynamical downscaling approach

depends both on the driving forecast GCM and RCM.

Before proceeding with dynamical downscaling of a sea-

sonal forecast GCM, it should first be assessed whether

the GCM has a reasonable representation of the warm

season atmospheric synoptic-scale circulation, in terms

of climatology and interannual variability. For North

America, the driving forecast GCM must reasonably

represent the atmospheric teleconnection responses as-

sociated with ENSO-PDV variability, as this is a princi-

pal driver of early warm season precipitation variability.

To illustrate the point, Fig. 19 shows the observed and

FIG. 16. As in Fig. 15, but for the second REOF of early warm season JJ SPI in WRF-NCEP.
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WRF-CFS simulated early warm season SPI for 1984

and 1993 and the corresponding NCEP–NCAR re-

analysis andCFS 500-mb heights. Thesewerewettest and

driest monsoons, respectively in the 1982–2000 record

for NAME precipitation zones 1 and 2. In 1984, CFS

reasonably simulates a strong monsoon ridge develo-

ping in early summer, leading to a very wet and early

monsoon and dry conditions in the central United

States. However, in 1993, CFS does not capture the

persistent trough over thewesternUnited States that helps

sustain very wet conditions in the central United States

and delay monsoon onset. We have only highlighted

the influence of Pacific SST forcing because it heavily

governs CFS predictability in the cool season. Other

warm season teleconnections responses during thewarm

season, such as the circumglobal teleconnection (Ding

and Wang 2005) and the influence of the Atlantic (e.g.,

Sutton and Hodson 2005), are also very important but

have not been considered here. Better performing sea-

sonal forecast GCMs should be more heavily weighted

in any seasonal forecast scheme that considers multiple

seasonal forecast GCMs. This would follow similar

strategies that have been used to differentially weight

GCMs from the Intergovernmental Panel on Climate

FIG. 17. (top) Most highly correlated mode of early warm season (JJ) SPI in CFS in

comparison to the first three REOF early warm season SPI modes fromWRF-NCEP, shown

as the correlation on the principal component with variance explained. Specifically, this mode

is most highly correlated with the second REOF from WRF-NCEP at a value of 0.42 with

significance exceeding the 95% level. (middle) Corresponding PC correlation on normalized

500-mb geopotential height anomalies from CFS. (bottom) Corresponding PC correlation on

CFS SSTA.
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Change Fourth Assessment report (IPCC AR4; e.g.,

Gleckler et al. 2008; Maxino et al. 2008; Dominguez

et al. 2010). Themaximum possible number of ensemble

members should be considered to have the best GCM

seasonal forecasts (Saha et al. 2006), and we acknowl-

edge that as a weakness in this study. RCMperformance

may also improve with increased spatial resolution and/

or improvements to convective parameterization schemes.

ThemodifiedKain–Fritsch scheme of Truong et al. (2009),

with a convective trigger that accounts for the effects of

dynamic pressure in complex terrain, can alleviate the

underestimation of precipitation in the WRF-NCEP

simulations (Luong et al. 2011). Also, a more sophisti-

cated treatment of the land surface is possible that con-

siders vegetation as a dynamic parameter (Niu et al. 2011;

Yang et al. 2011). We hope these suggestions will be

helpful in planning the next phase of theMulti-Ensemble

Ensemble Dynamic Downscaling of Multi-GCM Seasonal

Forecast (MRED) project (Arritt 2011) to consider

North American warm season precipitation, further sup-

porting the incorporation of RCMs a component inNCEP

operational seasonal forecasts in the near future.

FIG. 18. (top) Most highly correlated mode of early warm season (JJ) SPI in WRF-CFS in

comparison to first three REOF early warm season SPI modes from WRF-NCEP, shown as

the regression on the principal component with variance explained. Specifically, this mode is

most highly correlated with the second REOF from WRF-NCEP at a value of 0.44 with

significance exceeding the 95% level. (middle) Corresponding PC correlation on normalized

500-mb geopotential height anomalies from CFS. (bottom) Corresponding PC correlation on

CFS SSTA.
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