
Comparison of Land–Precipitation Coupling Strength Using Observations and Models

XUBIN ZENG

Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

MIKE BARLAGE

Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

CHRIS CASTRO

Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

KELLY FLING

U.S. Army Aberdeen Test Center, Aberdeen Proving Ground, Maryland

(Manuscript received 16 October 2009, in final form 24 February 2010)

ABSTRACT

Numerous studies have attempted to address the land–precipitation coupling, but scientists’ understanding

remains limited and discrepancies still exist from different studies. A new parameter G is proposed here to

estimate the land–precipitation coupling strength based on the ratio of the covariance between monthly or

seasonal precipitation and evaporation anomalies (from their climatological means) over the variance of

precipitation anomalies. The G value is easy to compute and insensitive to the horizontal scales used; however,

it does not provide causality. A relatively high G is a necessary—but not sufficient—condition for a relatively

strong land–precipitation coupling. A computation of G values using two global reanalyses (ECMWF and

NCEP), one regional reanalysis [North American Regional Reanalysis (NARR)], and observed precipitation

along with Variable Infiltration Capacity (VIC)-derived evaporation data indicates that the land–precipitation

coupling is stronger in summer and weaker in winter. The strongest coupling (i.e., hot spots) occurs over the

western and central parts of North America, part of the Eurasia midlatitude, and Sahel in boreal summer and

over most of Australia, Argentina, and South Africa in austral summer. The Community Climate System

Model, version 3 (CCSM3) shows much higher G values, consistent with the strong coupling shown by its

atmosphere–land coupled components in previous studies. Its overall spatial pattern of G values is not affected

much over most regions by the doubling of CO2 in CCSM3. The G values from the Regional Atmospheric

Modeling System (RAMS) are more realistic than those from CCSM3; however, they are still higher than

those from observations over North America.

1. Introduction

Water is constantly recycled between the atmosphere,

biosphere, hydrosphere, and lithosphere, and different

processes are responsible for moving water through each

component. The fate of a water molecule that is precip-

itated over land is percolation, runoff, or evapotranspira-

tion E, which includes wet canopy evaporation, dry canopy

transpiration, and soil evaporation. Less is understood

about the fate of water molecules evaporating or tran-

spiring from the surface. In some geographic locations,

precipitation P may rely heavily on water from local E. In

other areas, moisture convergence is the dominant source

of water for precipitation.

The land surface effect on local precipitation has been

studied for more than a century, and early studies were

briefly reviewed in Eltahir and Bras (1996). For instance,

in the early years of the twentieth century, it was thought

that the ratio of surface E over P would represent the

land surface contribution to precipitation over a conti-

nent and was estimated to be 70%. This view is incorrect
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because it was based on a simple and incorrect picture of

the water cycle in which the atmospheric moisture in-

flow to a region, rather than the moisture convergence, is

equal to runoff and hence recycled precipitation is

equivalent to E (Eltahir and Bras 1996).

This issue has also been studied using isotope data.

Isotopes of water depend on the temperature and history

of the water, and the analysis of the isotope data in rainfall

provides information about the origin of the water mol-

ecules. In general, condensation depletes heavy isotope

contents in rainfall as the air moves from ocean to land.

Therefore, a small isotope gradient from ocean to conti-

nental interior might indicate a relatively large contribu-

tion of land surface E to P. While the isotope data are

useful qualitatively, using them to quantify the land sur-

face effect on local precipitation has large uncertainties

because of the variability in isotope content of the mois-

ture that contributes to the observed precipitation over

a region (Kurita et al. 2004).

Using the precipitation recycling ratio to quantify the

contribution of local E to local precipitation has been a

popular approach in the past few decades (e.g., Anderson

et al. 2008; Bisselink and Dolman 2008). In this approach,

the total precipitation in a region is divided into two com-

ponents: precipitation from moisture advection PA and

that from surface evapotranspiration PE. The recycling

ratio PE/P provides a diagnostic measure of the land sur-

face contribution to local precipitation without explaining

the underlying physics (e.g., Brubaker et al. 1993). Dif-

ferent methods have been developed to compute the re-

cycling ratio, usually based on two assumptions: (i) the

atmosphere is well mixed, both horizontally and vertically;

and (ii) any changes in precipitable water (i.e., vertically

integrated water vapor) over monthly or longer time scales

can be neglected (Trenberth 1999 and references therein).

More recently, the second assumption was dropped in

Dominguez et al. (2006) by developing a dynamic pre-

cipitation recycling model. Their new model predicts

recycling ratios that are 12%–33% larger at a monthly

level than previous methods that neglect the change in

moisture storage in the atmosphere. These bulk diagnostic

approaches for precipitation recycling consider the land

surface contribution of moisture supply to precipitation,

and the computation of the recycling ratio is relatively

easy. However, these approaches do not consider how land

surface properties alter atmospheric processes (e.g., sta-

bility, circulation), which also affect precipitation. In other

words, the recycling ratio does not predict the dynamic

changes in rainfall following changes in E or atmospheric

moisture fluxes (Eltahir and Bras 1996).

Complementary to the recycling ratio approach, water

vapor tracers have also been used in numerical models

to calculate the local versus remote geographic (land or

ocean) sources of precipitation over a region (Druyan and

Koster 1989; Numaguti 1999). For instance, Bosilovich

and Schubert (2002) provided the percent contribution of

surface E from various (local, adjacent, or remote) regions

to the total precipitation in a given region over North

America (NA). This approach has been used to compute

the precipitation recycling ratio that is quite different from

the values using the earlier-mentioned bulk diagnostic

approach (Bosilovich and Schubert 2002). The major

limitation on the accuracy of the recycling estimates is the

veracity of the numerically simulated hydrological cycle.

Because soil moisture S provides the memory for the

surface–precipitation coupling, extensive research has also

been done on soil moisture time scales. As an example,

Wang et al. (2006) demonstrated the different time scales

of different water reservoirs of the vegetation–soil system

with the shortest and longest time scales for canopy-

intercepted water and vegetation rooting zone water, re-

spectively. Furthermore, while soil water and E have the

same time scales in a one-layer bucket model, they have

quite different time scales when canopy, surface soil layer,

and vegetation rooting zone are modeled separately. While

the interpretation of results from this approach is straight-

forward, the linkage to the E–P coupling is difficult to

quantify.

To directly address the land–precipitation coupling, re-

gional and global models have been used in numerous

studies. In particular, 12 global modeling groups partici-

pated in the Global Land–Atmosphere Coupling Exper-

iment (GLACE), which focuses on the quantification

of the degree to which anomalies in land surface (e.g.,

soil moisture) can affect summertime rainfall generation

(Koster et al. 2006; Guo et al. 2006). GLACE requires two

16-member ensemble simulations: in one ensemble, the 16

simulations differ in their initial conditions, and the soil

moisture values at every time step from one member

(denoted as W1) are saved in a data file; the other en-

semble is the same as the first one, except that the model-

predicted soil moisture values in the rooting zone and

below are replaced at every time step with values from

W1. Then an V index is defined to measure the similarity

among 16 members of an ensemble, and the difference

between the two ensembles (i.e., DV) is used to quantify

the strength of soil moisture–precipitation coupling. Sim-

ilarities in the spatial patterns of DV among 12 models are

then used to pinpoint multimodel ‘‘hot spots’’ of land–

precipitation coupling, including large regions of Africa,

central North America, and India (Koster et al. 2006).

Large geographic variations of DV with a given model and

the large model-to-model differences are also found, and

they are primarily caused by the S–E formulations, even

though the intermodel differences in the E versus P con-

nection also play a key role (Guo et al. 2006). Besides the
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DV index, Wang et al. (2007) proposed an alternative (DF)

index to quantify the soil moisture–precipitation coupling,

and they demonstrated that these two indexes represent

different aspects of precipitation predictability in ensemble

prediction, with the former (DV) emphasizing the pre-

dictability of temporal variability and the latter (DF) em-

phasizing the predictability of the mean.

In contrast to the earlier-mentioned modeling studies

in which the soil moisture data from a single simulation

are used for all simulations in an ensemble, model pre-

cipitation values for land models are replaced by the same

hybrid observation–reanalysis precipitation data in all

simulations in an ensemble (Dirmeyer 2006). On the ba-

sis of the analysis of the results from this and the control

ensembles, Dirmeyer (2006) found that, globally, fewer

than 10% of the signal of any change in precipitation sur-

vives the complete circuit of the hydrological cycle (from

precipitation to soil moisture, from soil moisture to evapo-

transpiration, and from evapotranspiration to precipita-

tion) for a particular model, even though there is a great

deal of variability regionally.

The advantages of these modeling studies are that the

land–precipitation coupling strength can be quantified,

and the multimodel averaging procedure in GLACE re-

moves peculiar results from individual models. However,

the GLACE approach is still subject to deficiencies shared

by multiple models and requires substantial computational

resources. More importantly, all these modeling studies

are unable to address the realism of the simulated coupling

strength, primarily because direct measurements of land–

atmosphere interaction at large scales do not exist.

Attempts have also been made to synthesize different

approaches to quantify land–atmosphere interactions. For

instance, Dirmeyer et al. (2009) combined the character-

istics of persistence of soil moisture anomalies, strong soil

moisture regulation of evaporation rates, and reinforce-

ment of water cycle anomalies through recycling to pres-

ent a composite assessment of global land–atmosphere

feedback strength as a function of season.

Despite these progresses, our understanding of the land–

precipitation coupling remains limited, and large discrep-

ancies still exist from different studies (e.g., Koster et al.

2006; Seneviratne et al. 2006; Wang et al. 2007; Notaro

2008; Zhang et al. 2008). In fact, it is claimed in Koster et al.

that, even if perfect measurements of precipitation and E

in a region were attainable, isolating the effect of E on

rainfall in the presence of the more dominant effect of

rainfall on E would prove to be problematic.

Recognizing the importance of the land–precipitation

coupling strength and the difficulty in addressing it, the

question becomes, is it possible to develop a new index

that is easy to compute based on existing observational

data and reanalyses as well as standard climate model

output for the estimation of the land–precipitation cou-

pling strength? This paper represents our multiyear at-

tempt in this direction. It does not solve this difficult

problem; instead, it attempts to provide a simple index

that is easy to compute and straightforward to interpret

and hence contributes to the better understanding of this

issue. Section 2 discusses the data and presents our new

index. Results based on various datasets and regional and

global model outputs are discussed in section 3, while con-

clusions are given in section 4.

2. Data and method

a. Data and model output

Because of its large spatial and temporal variability

(including intermittency), precipitation is one of the

most difficult atmospheric variables to measure. While it

can be directly measured by using rain gauges, gauge

data are not available over unpopulated land regions and

most oceanic regions, and the conversion of point values

on a sparse irregular grid into areal means introduces

sampling errors. Precipitation can also be measured by

radars and satellite remote sensing (e.g., Zeng 1999).

Compared with precipitation, E is even more difficult to

measure, and accurate E measurements are simply not

available globally or even regionally. Recognizing these

difficulties, our strategy here is to use data from different

sources (as summarized in Table 1) to see if we can reach

any conclusions that are relatively robust.

First, we will use the global 2.58 monthly P and E data

from the 40-yr European Centre for Medium-Range

TABLE 1. Summary of datasets used. No direct evaporation measurements were used in any of the datasets.

Name Type Period Resolution Note Reference

NCEP–NCAR Global reanalysis 1958–2006 2.58 No P assimilation Kalnay et al. (1996)

ERA-40 Global reanalysis 1957–2002 2.58 No P assimilation Uppala et al. (2005)

NARR NA reanalysis 1979–2002 30 km P assimilation Mesinger et al. (2006)

VIC NA offline land 1950–2000 1/88 Observed P Maurer et al. (2002)

CCSM3 Global model 50 yr 2.88 Simulated P Collins et al. (2006)

CCSM3 (2 3 CO2) Global model 50 yr 2.88 Simulated P Collins et al. (2006)

RAMS NA model 1950–2002 35 km Simulated P Castro et al. (2007)
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Weather Forecasts (ECMWF) Re-Analysis from the

period 1957–2002 (Uppala et al. 2005) and the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

from the period 1958–2006 (Kalnay et al. 1996). Both

variables are model derived, but they are constrained by

observational data (without using observed precipita-

tion). Significant biases have been found in the hydro-

logical cycle of both reanalyses (e.g., Trenberth and

Guillemot 1998; Hagemann et al. 2005; Lucarini et al.

2007) because of model deficiencies and the failure to

directly assimilate observational precipitation. Further-

more, the data assimilation process does not conserve

water vapor; thus, the atmospheric moisture budget is not

balanced (e.g., Roads et al. 2003).

We will also use the 30-km monthly P and E data from

the North American Regional Reanalysis (NARR) from

the period 1979–2002 (Mesinger et al. 2006). Compared

with the earlier-mentioned global reanalyses, NARR

directly assimilates observed hourly P and has a much

higher spatial resolution and better accuracy.

In addition to these reanalyses’ data using land–

atmosphere coupled modeling systems, we will use the

North American 1/88 monthly P and E data from the pe-

riod 1950–2000 (Maurer et al. 2002). The precipitation

data were primarily based on surface rain gauge data,

while the evaporation values were computed using the

Variable Infiltration Capacity (VIC) land model forced by

observed precipitation and near-surface air temperature

and other derived near-surface atmospheric data. VIC is

a macroscale terrestrial hydrologic model that balances

both surface energy and water over each model grid.

Furthermore, we will evaluate the monthly P and E

from the NCAR Community Climate System Model,

version 3 (CCSM3). CCSM3 is a fully coupled global cli-

mate model that simulates the earth’s past, present, and

future climate states (Collins et al. 2006). Model output

for 50 yr from the control run and the 2 3 CO2 run at T42

(i.e., 2.88) horizontal resolution will be used.

Besides global model output, we will also evaluate

North American monthly P and E for summer from the

Regional Atmospheric Modeling System (RAMS; Castro

et al. 2007). Boundary conditions for these simulations

were provided by the NCEP–NCAR reanalysis for the

period 1950–2002. The main intent in Castro et al. (2007)

was to demonstrate the improved performance of RAMS

(as a regional climate model) over a global model or

global reanalysis in the representation of North Ameri-

can warm-season climate. The RAMS output is of inter-

est to analyze because of the increase in coupling strength

during the warm season (to be discussed later) and the

relatively high spatial resolution (35 km), as compared to

a global model such as CCSM3.

The CCSM3 simulations are roughly equivalent to the

two reanalyses in grid spacing and physical parameteriza-

tions, so the only real difference is that data from various

sources were assimilated in the reanalyses, while energy,

water, and mass are conserved in the global model. Simi-

larly, the RAMS simulations are roughly equivalent to

NARR in grid spacing and physical parameterizations, so

the only real difference is that various data (particularly

precipitation) were assimilated in NARR, while the other

is a pure regional climate model with just lateral boundary

forcing and some weak internal nudging.

b. Method

For each area (or model grid box), the vertically inte-

grated water vapor balance equation in the atmosphere is

P 5 E 1 C and C 5 F
in
� F

out
� ›W/›t 1 a, (1)

where W is the vertically integrated water vapor (i.e.,

precipitable water) and ›W/›t can be neglected at monthly

or longer time scales, a is an artificial residual term, and

Fin and Fout are the inflow and outflow of atmospheric

moisture over all the boundaries of the area divided by

the area, respectively, so that (Fin 2 Fout) represents the

convergence of moisture flux. For atmospheric models, a

is zero because of the explicit consideration of water vapor

conservation. For data assimilation, a is not zero. In fact, it

is relatively large in global reanalysis (e.g., Dominguez

et al. 2006), but it is much smaller in the regional rean-

alysis (Mesinger et al. 2006). For offline land data (e.g.,

Maurer et al. 2002), atmospheric processes are not con-

sidered, and a is not relevant.

As mentioned in section 1, it was thought in the early

twentieth century that the ratio of E/P represents the land

contribution to precipitation. This is incorrect because E

needs to compare with Fin rather than (Fin 2 Fout). Fur-

thermore, part of E is advected out of the area, contrib-

uting to Fout. Previous bulk diagnostic approaches on

precipitation recycling addressed the relative importance

of E versus Fin (e.g., Dominguez et al. 2006); however,

they did not address the relation of the variation of P

versus that of E (e.g., Eltahir and Bras 1996), which is the

purpose of our work.

Since (1) is valid for one month, it is also correct for

that month averaged over all the years with data, so that

it is also valid for the deviation from the climatological

monthly mean:

P9 5 E9 1 C9, (2)

where each variable is a function of month and year. In our

initial attempt (K. Fling et al. 2003, unpublished manu-

script), it was argued that, if there is an E 2 P coupling, it
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is necessary that P9 correlates with E9. Furthermore, this

correlation rP,E needs to be compared with that between

P9 and C9 [computed as (P9 2 E9)], denoted as rP,C. This

correlation ratio k 5 rP,E/rP,C was then used to estimate

the E 2 P coupling strength. While the qualitative results

from this parameter are still correct (e.g., the land surface

effect on local precipitation is more important in summer

than in winter and it is, in general, not as important as the

atmospheric moisture convergence), the quantitative in-

terpretation of k turned out to be difficult (to be discussed

further later).

As an improvement over our earlier effort, we can

rewrite (2) as

�
N

i51
P92

i 5 �
N

i51
P9

i
E9

i
1 �

N

i51
P9

i
C9

i
, (3)

where the subscript i denotes month and N denotes the

years of data. Then, we define our new indicator of the

land–precipitation coupling strength as

G 5 �
N

i51
P9

i
E9

i
�
N

i51
P92

i .

,
(4)

The time series of Pi9 and Ei9 as well as the G values over

two grid cells using various datasets and model outputs

will be presented later (Figs. 10 and 11).

Our earlier parameter k can be related to our new

parameter G as

k 5
G

1� G

s
C

s
E

, (5)

where sC and sE are the standard deviations of C9 and

E9, respectively. Assuming sC is comparable to sE, k

would be much larger than G if G is (usually) between

0 and 1; G can also be related to rP,E as

G 5 r
P,E

s
E

s
P

. (6)

No specific assumptions are made in the derivation of (4),

and monthly P and E are standard model output. Our new

parameter G is easy to compute, and it represents the

fractional contribution of the covariance between monthly

precipitation deviations (from its climatological mean)

and monthly evapotranspiration deviations to the variance

of precipitation deviations. Note that the derivation of (3)

is not new, and equations similar to (3) have been widely

used for different purposes. For instance, similar equations

were used to quantify the dominant balances and ex-

changes of the atmospheric water cycle at diurnal, annual,

and intraseasonal time scales using reanalysis data for 3 yr

(Ruane and Roads 2008). What is new here is to compute

G in (4) using multidecadal monthly data or model output

to characterize the land–precipitation coupling.

If the land–precipitation coupling is weak, then G

should be close to zero. In other words, a relatively large

G is a necessary condition for a relatively strong land–

precipitation coupling. Furthermore, a higher G is most

likely to indicate a stronger coupling over most areas, even

though special situations may be constructed in which a

higher G does not necessarily correspond to a stronger

coupling. The complexity over special situations may be

caused by the fact that E9 and C9 are not entirely inde-

pendent. For instance, water vapor from evaporation

could be carried out of the grid cell by wind. The G values

do not provide causality either.

For reanalyses, climatological mean errors in P or E do

not affect the computation of G, because only deviations

(from climatological means) are used in (4). While the

moisture convergence in the atmosphere (Fin 2 Fout) in

(1) is generally regarded as more reliable than E, it is

generally not archived and has to be computed from usu-

ally 6-hourly reanalysis data. The reanalysis data have also

been interpolated from model (sigma) levels to pressure

levels, destroying much of the detail in the lower atmo-

sphere that contributes to the final integrated values of Fin

and Fout. Furthermore, because of the existence of residual

term a in (1) and the uncertainties in P, it will be our future

task to directly use the deviations of (Fin 2 Fout) to com-

pute the E deviations.

Note that, instead of the covariance in (4), time-delayed

covariance of �N

i51P9i E9i�1 (with the subscript i denoting

month) can also be computed. However, even this lagged

covariance may not represent the causality because of the

complicated interaction of P9, E9, and C9. Furthermore,

the ratio of such lagged covariance over the variance of P9

does not represent the fractional contribution anymore.

For these reasons, only G values in (4) are computed in this

study.

Compared with previous studies, G is most similar to the

parameter l in Notaro (2008), which is computed as the

ratio of the lagged covariance between P and total column

S over the lagged covariance of S. Both G and l are easy to

compute, without doing additional modeling experiments.

Here, G has a clear physical meaning without making any

assumptions, but it does not provide causality. The inter-

pretation of l as the S 2 P feedback parameter depends

on two assumptions: (i) the lagged covariance between

the precipitation perturbations (generated internally by

atmospheric processes) and S can be neglected and (ii)

the atmospheric response time is much shorter than the

monthly time scale. These assumptions may not be valid in

some situations. For instance, internal atmospheric dy-

namics may generate 30–60-day oscillations in the tropics
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(Zhang 2005). Here, l is more closely related to cau-

sality than G, but it still does not represent the causality

directly, as cautioned in Salvucci et al. (2002) and Wei

et al. (2008).

3. Results

a. Results based on global and regional
reanalysis data

Figure 1 shows the seasonal G distribution using the

ECMWF reanalysis data. The statistical significance of

the results can be estimated as the same as that of the rP,E

based on (6). It is found that G values more than 0.2 in

magnitude are significant at the 5% level in Fig. 1. Similar

to Koster et al. (2006), areas with relatively high G values

(e.g., G . 0.4) are defined as hot spots here. It is clear

from Fig. 1 that the hot spots move with season. Over the

Northern Hemisphere, the hot spots in boreal summer

[June–August (JJA)] include the western and central

parts of North America, part of the Eurasia midlatitude,

and Sahel. For transition seasons [September–November

(SON) and March–May (MAM)], these hot spots still

exist to a certain degree but with smaller G values. They

largely disappear in boreal winter [December–February

(DJF)]. Over the Southern Hemisphere, the hot spots in

austral summer (DJF) include most of Australia, Ar-

gentina, and South Africa. For transition seasons (SON

and MAM), these hot spots (except Argentina) still exist.

In austral winter (JJA), the hot spot disappears over South

Africa and is significantly weakened over Australia, while

a new hot spot appears over the central plains of South

America.

The summertime land–precipitation coupling strengths

have been discussed based on GLACE (Koster et al.

2006) and on the lagged soil moisture–precipitation co-

variance analysis of results from 19 Intergovernmental

Panel on Climate Change (IPCC) models (Notaro 2008).

The existence of hot spots over North and South Amer-

ica, Eurasia, and North Africa in the summer (JJA) panel

of Fig. 1 is qualitatively similar to those in Koster et al.

(2006, their Fig. 10) and Notaro (2008, his Fig. 3), even

though exact geographic locations differ. All three agree

with each other on the hot spot over northern India. The

hot spot over the equatorial Africa (with rain forest) and

Sahel (with grasses, shrubs, and savannas) is the largest in

Koster et al. and Notaro, while it is smaller in geographic

area and appears primarily at the semiarid transition zone

between the Sahara Desert and the tropical forest in the

JJA panel of Fig. 1. In North America, the hot spot that

FIG. 1. Seasonal G distributions based on the ECMWF reanalysis data. Results over oceans and those over land with the standard deviation

of seasonal P less than 0.2 mm day21 are shaded.
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exists over the central part in Koster et al. covers both the

western and central parts in the JJA panel of Fig. 1, and

covers both the central and eastern parts in Notaro. In

Eurasia, there are no hot spots in Koster et al., while re-

sults in the JJA panel of Fig. 1 agree with those in Notaro

(i.e., with a hot spot along a midlatitude band). In South

America, the hot spot occurs over the central Amazon in

Koster et al. and in the northern Amazon in Notaro, while

it occurs over the central plains (rather than the tropical

forest) in the JJA panel of Fig. 1. Both the JJA panel of

Fig. 1 and Notaro show a hot spot over Australia, while

there is none in Koster et al. While Notaro shows a hot

spot over Indonesia, there is none in the JJA panel of

Fig. 1 or Koster et al.

Dirmeyer et al. (2009) presented a composite assess-

ment of global land–atmosphere feedback strength as

a function of season. Over North America, both Fig. 1

here and Fig. 6 in Dirmeyer et al. show the strong land–

precipitation coupling strength over western and central

parts for some seasons. However, the overall coupling

is strongest in summer in Fig. 1, but it is in spring in

Dirmeyer et al. Furthermore, there is a hot spot over

central North America in winter (DJF) in Dirmeyer et al.,

while there is none in Fig. 1. Both show a hot spot over

Eurasia but, again, the seasonality is different with the

maximum coupling occurring in spring in Dirmeyer et al.

and in summer in Fig. 1. The hot spot over Sahel occurs in

summer and fall in Fig. 1, while it occurs in fall only in

Dirmeyer et al. Both show the hot spot over Australia,

but Fig. 1 shows the minimum coupling in austral win-

ter (JJA), while it occurs in austral summer (DJF) in

Dirmeyer et al. Both show strong coupling in South Af-

rica in MAM and weak coupling in JJA; however, the

coupling for other two seasons is also strong in Fig. 1 but

weak in Dirmeyer et al. Both show the JJA hot spot over

the central plains of South America; however, the cou-

pling is strongest in Argentina in austral summer in Fig. 1

but strongest in two areas of South America in austral

autumn (MAM).

To better understand the G values, Fig. 2 compares

the geographic distribution of G, k, and rP,E, which are

quantitatively linked through (5) and (6). Here, rP,E is

dominated by the effect of P on E (through soil mois-

ture), and the areas covered by rP,E values higher than

0.4 (i.e., statistically significant at the 1% level) in Fig. 2a

are much greater than those indicated by the G values in

Fig. 2d. The GLACE multimodel analysis in Guo et al.

(2006) shows that the existence of hot spots of land–

atmosphere coupling in the transition zones between dry

and wet areas is because of the coexistence there of a

high sensitivity of E to soil moisture and a high temporal

variability of the E signal. In particular, Guo et al. (2006)

concluded that an evaporation rate that varies strongly

and consistently with soil moisture tends to lead to a

higher S–P coupling strength. Since G represents the pro-

duct of rP,E and sE normalized by sP in (6), it explicitly

represents the effect of P on E (through soil moisture) and

may implicitly reflect part of the feedback from E to P

(through sE which is correlated with the coupling strength

mentioned in Guo et al.).

The correlation ratio k 5 rP,E/rP,C in Fig. 2b provides

a useful constraint in the interpretation of rP,E in Fig. 2a:

rP,E needs to be statistically significant and also compared

with rP,C. However, areas with high k values are nearly

the same as those with high rP,E values, and quantitative

interpretation of k remains difficult. For instance, k is

larger than 1.2 over a few areas in Fig. 2b, which seems to

(incorrectly) imply that land effect on precipitation is

more important than atmospheric advective processes. In

contrast, with a clear physical meaning from (4), G is easy

to interpret quantitatively in Fig. 2d.

The standard deviation of P9(sP) is less than

0.1 mm day21 over deserts and permanent ice caps in

polar regions (Fig. 2c), while it is much higher over humid

regions. Over regions with small sP, the covariance of P9

and C9 does not have much practical value, while G might

become arbitrarily large. Therefore, G is computed only

over regions with sP greater than 0.2 mm day21. Evi-

dently the use of 0.1 or 0.3 mm day21 would affect the

results over some grid cells but would not affect any

conclusions.

Figure 3 shows the G distributions using the NCEP re-

analysis data. As expected, exact G values differ between

Figs. 1 and 3. However, areas with relatively high G values

are similar to each other over most regions except for the

overall higher G values over Australia in the ECMWF

reanalysis and the overall higher G values in the Sahel in

the NCEP reanalysis.

One of the deficiencies of both ECMWF and NCEP

reanalyses is that they did not assimilate precipitation data.

In contrast, NARR did assimilate the observed hourly

precipitation. To be comparable with the global reanalysis

data, the 32-km NARR E and P data were averaged into

2.58, which were then used to compute G values. As an

example, the results for July are shown in Fig. 4a. Con-

sistent with both ECMWF and NCEP data, G values are

relatively high over the western and central parts of North

America only.

For the computation of the precipitation recycling ratio,

the results are very sensitive to the horizontal scales used

(e.g., Eltahir and Bras 1996; Trenberth 1999). To address

this issue, G values were also computed at the 32-km res-

olution and then averaged to 2.58 grid cells, as shown in

Fig. 4b. The results in Figs. 4a and 4b are nearly the same,

with the differences ,0.1 in magnitude, indicating that the

G values are insensitive to the horizontal scales.
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In the reanalysis data mentioned earlier, the residual

term a in (1) is not zero, as also mentioned earlier. The

precipitation data from the two global reanalyses also

have serious deficiencies. Here, we also use the observed

precipitation and the evapotranspiration data derived

from the offline VIC land modeling over North America

(Maurer et al. 2002). Figure 5 shows that the results are

consistent with those from the ECMWF and NCEP rean-

alyses: higher G values in summer than in winter, and higher

G values in the western and central parts of Northern

America than over the eastern part.

As a synthesis of the results so far, Fig. 6 presents av-

eraged G distributions for July using all four datasets.

Again, the G values are higher over the western and cen-

tral parts of North America than over the eastern part. As

mentioned before, high G values may not have practical

values if the standard deviation of precipitation sp is too

small. To illustrate this point, three different shadings are

used in Fig. 6. The results are shaded in Fig. 6c if sp ,

0.2 mm day21 from all four datasets, which is least re-

strictive. There are four grid cells with G . 0.6. When only

the observed precipitation data as used in VIC are used for

shading in Fig. 6a, these grid cells are reduced to one cell

only (with G . 0.6). When the criterion is most restrictive

(i.e., sp , 0.2 mm day21 from any of the four datasets) in

Fig. 6b, there are no grid cells with G . 0.6. To be con-

servative, the most restrictive Fig. 6b is taken as the syn-

thesis of results in which the hot spot covers the Great

Plains (in agreement with Koster et al. 2006) and part of

the western United States (in agreement with Zhang et al.

2008).

b. Model output analysis

Because the computation of the G values is very easy,

we have analyzed the regional and global model outputs

and results are presented here.

Figure 7 show the results using 50-yr monthly model

output from the ocean–atmosphere–land–ice fully cou-

pled CCSM3 (Collins et al. 2006). Compared with data

analysis (e.g., Figs. 1 and 3), the model correctly shows

higher G values in the summer hemisphere than in the

winter hemisphere. However, the G values are overall

FIG. 2. The summertime (JJA) distributions of (a) rP,E, (b) k, (c) sP (mm day21), and (d) G (same as Fig. 1c) based on the

ECMWF reanalysis data.
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much higher compared with Figs. 1 and 3. In particular,

summertime G values over the eastern part of the United

States are greater than 0.6, in contrast to the values less

than 0.2 in Fig. 6. The strong land–atmosphere coupling in

the CCSM3 shown here is consistent with the strong cou-

pling shown by its atmosphere–land coupled components

[Community Atmosphere Model, version 3–Community

Land Model, version 3 (CAM3–CLM3)] in Koster et al.

(2006). This strong coupling is primarily caused by the

high sensitivity of atmospheric convection to surface heat

flux forcing in CCSM3 (Guo et al. 2006), and to a lesser

degree, caused by the severe dry soil bias in CCSM3

(Lawrence et al. 2007).

We have also computed the G values using the 50-yr

output of CCSM3 with the doubling of CO2, and Fig. 8

shows the differences between the doubling of CO2 and

the control CCSM3. There is an increase of G values in the

warming world over part of the northern high latitudes,

eastern North America, and southern Australia in July.

Over most of the other regions and for other months, the G

FIG. 3. As in Fig. 1, but using the NCEP reanalysis data.

FIG. 4. Monthly G distributions in July based on the NARR reanalysis data. The results over oceans and those over land with the

standard deviation of monthly P less than 0.2 mm day21 are shaded. (a) The E and P data were averaged from around 32 km to 2.58 and

then used to compute G. (b) The G values at 32-km resolution were computed and then averaged to 2.58.
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differences are not coherent in space, indicating an overall

insensitivity of G values to the doubling of CO2.

We have also analyzed the regional climate model

output (Castro et al. 2007). Figure 9 shows that the re-

gional climate model (RAMS) is more realistic in pro-

ducing smaller G values over the eastern part of the United

States than the global model (CCSM3, Fig. 7), even though

these G values are still higher than those from data anal-

yses in Fig. 6.

To better understand the results from the analyses of

data and model output, Figs. 10 and 11 show the actual

monthly E and P anomalies in July over two grid cells

over the United States. When the G value is relatively

high, both E9 and P9 show significant variations in Fig. 10.

Consistent with the overall small G differences between

the doubling of CO2 versus the control CCSM3 simula-

tions, the difference is just 20.04 over this grid cell. Even

though G values from CCSM3 and RAMS are generally

higher than those using observed and reanalysis data,

they are lower at this grid cell.

When the G value is low, the variation of P9 is still

large; however, the variation of E9 is small in Fig. 11. For

this location, the G value (0.04) from RAMS is consistent

with the average (0.09) from all four datasets, while the

G value (0.30) from CCSM3 is much larger than those

from data analysis. In contrast to the grid cell in Fig. 10,

there is a large G difference (0.21) between the doubling

of CO2 versus the control CCSM3 simulations.

FIG. 5. Seasonal G distributions based on the observed P and E data derived from the VIC land model over North America. The results

(over land) with the standard deviation of seasonal P less than 0.2 mm day21 are shaded. The E and P data were averaged from 0.1258 to

2.58 and then used to compute G.

FIG. 6. Average monthly G distributions for July over North America using the 2.58 data from global reanalyses (ECMWF, NCEP),

regional reanalysis (NARR), and offline land data (VIC). The results (over land) are shaded if the standard deviation of monthly P is less

than 0.2 mm day21 using the observed P data as used in (a) VIC, (b) any of the four datasets, and (c) using all four datasets.
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4. Conclusions

Land–precipitation coupling has been studied for more

than a century and has received particular attention in

the past 10 years—from water isotope analysis, precip-

itation recycling ratio analysis, water vapor tracer com-

putation, soil moisture memory evaluation, and direct

land–atmosphere coupled modeling. However, our under-

standing remains limited, and discrepancies still exist from

different studies. In this study, a simple parameter—G—

is proposed to estimate the land–precipitation coupling

strength based on the ratio of the covariance between

monthly or seasonal precipitation and evaporation anom-

alies (from their climatological means) over the variance

of precipitation anomalies. The G value is easy to compute

from observations and standard model output and is

relatively straightforward to interpret. A relatively high

G is a necessary condition for a relatively strong land–

precipitation coupling.

First, G values are computed using the ECMWF and

NCEP global reanalyses, and results are similar between

them. Results from these global datasets, the NARR re-

gional reanalysis in which precipitation was assimilated,

and the observed precipitation along with derived evap-

oration data indicate that the land–precipitation coupling

is stronger in summer and weaker in winter. The strongest

coupling (i.e., hot spots) occurs over the western and

central parts of North America, part of the Eurasia mid-

latitude, and Sahel in boreal summer and over most of

Australia, Argentina, and South Africa in austral summer.

Then, G values are computed using the output from

global and regional climate models. The Community Cli-

mate System Model, version 3 (CCSM3) shows much

higher G values, consistent with the strong coupling shown

by its atmosphere–land coupled components in Koster

et al. (2006). The doubling of CO2 in CCSM3 increases the

G values over part of northern high latitudes, eastern

North America, and southern Australia in July. Over

most of the other regions and for other months, the overall

spatial pattern of G values is not much affected by the

doubling of CO2 in CCSM3. The G values from the Re-

gional Atmospheric Modeling System (RAMS) are more

realistic than those from CCSM3, but they are still higher

than those from observations.

The global distribution and seasonal variations of G

values from the ECMWF and NCEP reanalyses have

been compared with previous modeling and data analysis

results. While the existence of hot spots in most regions

qualitatively agree with each other, the exact geographic

locations of these hot spots in summer differ among this

FIG. 7. Monthly averaged G in January, April, July, and October based on 50-yr CCSM3 model output. Results over oceans and those over

land with the standard deviation of model monthly P less than 0.2 mm day21 are shaded.
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study, the multimodel study of Koster et al. (2006), and the

lagged soil moisture–precipitation covariance analysis of

IPCC model results in Notaro (2008) or between the latter

two studies. While our results show the maximum land–

precipitation coupling strength in summer, the maximum

coupling occurs in autumn from the data analysis of

Dirmeyer et al. (2009).

Our approach can also be compared with previous

approaches in general. While the precipitation recycling

ratio (e.g., Trenberth 1999) is sensitive to the horizontal

FIG. 8. Difference of monthly averaged G in January, April, July, and October based on 50-yr model output from the doubling of CO2 vs

control CCSM3 simulations. Results over oceans and those over land with the standard deviation of monthly P from either of the

simulations less than 0.2 mm day21 are shaded.

FIG. 9. Monthly averaged G in July based on 52-yr RAMS regional climate model output.

Results over oceans and those over land with the standard deviation of model monthly P less

than 0.2 mm day21 are shaded. The E and P data were averaged from 32 km to 2.58 and then

used to compute G.
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scales used, our G values are not. Both G values and

l values from Notaro (2008) are easy to compute com-

pared with other modeling approaches (e.g., Koster et al.

2006). Here, G is derived rigorously in (4) and represents

the fractional contribution of the covariance between

monthly P9 and E9 to the variance of monthly P9, while the

interpretation of l as the soil moisture–precipitation

feedback parameter depends on two assumptions that may

not be valid in some situations. On the other hand, a higher

G is just a necessary—but not sufficient—condition for

a strong land–precipitation coupling. For instance, for

an idealized situation where P9 causes soil moisture

FIG. 10. Time series of July E (red lines) and P (blue lines) anomalies (mm day21) over a grid cell centered at (408N, 1058W) with

relatively large G values from data analyses: (a) ECMWF (with G 5 0.45), (b) NCEP (G 5 0.50), (c) NARR (G 5 0.36), (d) VIC (G 5 0.44),

(e) control CCSM3 (G 5 0.36), (f) CCSM3 with the doubling of CO2 (G 5 0.32), and (g) RAMS (G 5 0.24).
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anomalies and hence E9, there would be a high G value

even if there is a minimal feedback from E9 to P9. Here, l

is more closely related to causality than G, but it still does

not represent the causality directly. In fact, data analysis,

theoretical reasoning, and modeling all indicate that the

lagged soil moisture–precipitation correlation could be

mainly caused by the combined effect of precipitation

variability and the soil moisture memory, so that the

lagged correlation does not necessarily imply a causality

(Wei et al. 2008). The GLACE modeling approach in

Koster et al. (2006) is useful to directly address part of the

soil moisture–precipitation coupling problem, but it is

computationally expensive and some of its weaknesses

have also been identified (e.g., Seneviratne et al. 2006;

FIG. 11. Time series of July E (red lines) and P (blue lines) anomalies (mm day21) over a grid cell centered at (408N, 82.58W) with

relatively small G values from data analyses: (a) ECMWF (with G 5 0.10), (b) NCEP (G 5 0.14), (c) NARR (G 5 20.04), (d) VIC (G 5

0.16), (e) control CCSM3 (G 5 0.30), (f) CCSM3 with the doubling of CO2 (G 5 0.52), and (g) RAMS (G 5 0.04).
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Wang et al. 2007; Notaro 2008; Zhang et al. 2008). The

composite data analysis in Dirmeyer et al. (2009) con-

siders three factors: soil moisture control of E, soil mois-

ture memory, and the precipitation recycling. However,

only the correlation of soil moisture and recycling ratio,

rather than the recycling ratio itself, was considered. In

other words, a high correlation does not necessarily imply

a high recycling ratio. Some of its conclusions (e.g., the

generally strongest coupling in the transition seasons,

rather than during the summer; the weakest coupling

in austral summer, rather than in austral winter, over

Australia) still need to be further verified.

These comparisons and the earlier-mentioned differ-

ent results from different approaches both indicate our

current lack of understanding of the land–precipitation

coupling, and it is difficult to claim which approach is

most realistic at present. Our parameter—G—is simple

to compute and straightforward to interpret and hence

provides a good base line for land–precipitation coupling

studies. As an example, G values can be easily computed

from monthly or seasonal output from different global

and regional models (e.g., those used in various model

intercomparison projects and in the IPCC simulations),

and these G values could place an individual model’s

land–atmosphere coupling strength within the broad

range of those from various models. As mentioned ear-

lier, CCSM3 shows much higher G values, consistent

with its strong coupling from GLACE, but the G com-

putation is much simpler. Further efforts with creative

data analysis and innovative design of model experi-

ments are still needed to better understand the land–

precipitation coupling. For instance, the G parameter

from this study, the l parameter from Notaro (2008),

and the composite approach from Dirmeyer et al. (2009)

may be combined for the analysis of observational data

and model output. Particularly useful for such a study

would be the newly available reanalysis data from Modern

Era Retrospective-analysis for Research and Applications

(MERRA; Bosilovich et al. 2009) with its improved esti-

mates of the hydrological cycle, including the saving of the

analysis increments to help address the vexing problem of

the lack of closure in (1).
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