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ABSTRACT

In a water-stressed region, such as the southwestern United States, it is essential to improve current sea-

sonal hydroclimatic predictions. Typically, seasonal hydroclimatic predictions have been conditioned by

standard climate indices, for example, Niño-3 and Pacific decadal oscillation (PDO). In this work, the sta-

tistically unique relationships between sea surface temperatures (SSTs) and particular basins’ hydroclimates

are explored. The regions where global SSTs are most correlated with the Little Colorado River and

Gunnison River basins’ hydroclimates are located throughout the year and at varying time lags. The SSTs,

from these regions of highest correlation, are subsequently used as hydroclimatic predictors for the two

basins. This methodology, named basin-specific climate prediction (BSCP), is further used to perform

hindcasts. The hydroclimatic hindcasts obtained using BSCP are shown to be closer to the historical record,

for both basins, than using the standard climate indices as predictors.

1. Introduction

Lake Powell divides the upper and lower Colorado

River basins and has historically had sufficient storage to

provide both regions with the quantities of water set by

the Colorado River Compact. The current drought,

which began in 2000, however, has shown that Lake

Powell’s storage is susceptible to natural climate vari-

ability and cannot always be relied upon. In April 2005,

Lake Powell’s storage was 33% of live capacity because

of yearly inflows that were, on average, approximately

59% below normal. Rising temperatures across the

southwestern United States, associated with global cli-

mate change, could further exacerbate droughts in the

ColoradoRiver basin (Barnett et al. 2005, 2008;McCabe

and Wolock 2007; Hoerling and Eischeid 2007). The

projected temperature increase and accompanying in-

crease in evapotranspiration are anticipated to decrease

runoff in the Colorado River basin between 6%–30%

over the next 50 years (Milly et al. 2005; Christensen

et al. 2004; Christensen and Lettenmaier 2007). Since

the signing of the Colorado River Compact in 1922, the

demand for water to be used for municipality, agricul-

ture, and hydropower has grown rapidly. In addition to

this increase in demand, climate projections are ex-

pected to decrease supply and further stress the water

resources in the Colorado River basin. To aid decision

makers and stakeholders in the allocation of this

stressed resource in the Southwest, it is essential to im-

prove hydroclimatic seasonal predictions.

Most of the variability in Lake Mead’s pool elevation

is governed by releases from Lake Powell. In the event

that a drought restricts Lake Powell’s releases to an

amount less than required by the Colorado River Com-

pact, tributaries between Powell and Mead will play

a significant role in the Lower Colorado basin states’

water supply. Therefore, development and improvement

of hydroclimatic predictions needs to take place at the

subbasin scale (e.g., Little Colorado River basin or Paria

River basin). Improving these subbasin predictions can

provide a more detailed map of water availability for the

entire Colorado River basin, thus reducing potential

uncertainty confronting water managers.
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The earth’s oceans have a vast storage of energy that

helps drive global climatic variability. Sea surface tem-

peratures (SSTs) are one manifestation of this energy

storage. Given the oceanic mass and water’s large spe-

cific heat, SSTs’ effect on ocean–atmosphere heat and

water vapor exchange can be on seasonal to annual time

scales. Consequently, variability in SSTs can help pro-

vide predictive information about the hydroclimate in

regions across the globe. Over the past several decades,

the statistical link between regional SST variability [e.g.,

the El Niño–Southern Oscillation (ENSO), the Pacific

decadal oscillation (PDO) and the Atlantic multi-

decadal oscillation (AMO)] and global surface hydro-

climatic variability has been well established (Trenberth

1997; Namias and Cayan 1984; Redmond and Koch

1991; Ropelewski and Halpert 1996; Enfield et al. 2001).

Niño-3 is a commonly used index of ENSO, in which

Niño-3 is the area average of the SSTs over the domain

between 58N and 58S latitude and between 2108 and

2708E longitude (east of the prime meridian). The PDO

index is calculated to be the first principal component

[derived from a principal component analysis (PCA)] of

detrended SST anomalies northward of 208N latitude in

the Pacific Ocean (Mantua et al. 1997), whereas the

AMO is essentially the detrended, area-weighted aver-

age of SSTs over the North Atlantic Ocean.

At seasonal to interannual time scales, there are nu-

merous studies documenting the statistical connectivity of

ENSO to land surface variables affecting hydroclimatic

variability, including temperature (Higgins et al. 2000),

precipitation (Ropelewski and Halpert 1996; McCabe

and Dettinger 1999; Kim et al. 2005), and streamflow

(Piechota et al. 1997; Cayan et al. 1999; Gochis et al.

2007). McCabe and Dettinger (1999) correlate Niño-3

with western U.S. precipitation and show statistically

significant regions (these regions have correlation co-

efficients that are not a result of chance, at the 95%

confidence interval). They, in addition to other studies,

observe a negative correlation between Niño-3 and win-

ter precipitation in the Northwest, whereas Niño-3 and

winter precipitation in the Southwest exhibit a positive

correlation.

Forecasts of precipitation and temperature, made by

the Climate Prediction Center (CPC), are typically used

by the River Forecast Centers to force statistical and

hydrological models to simulate naturalized streamflows

across the westernUnited States. The CPC currently uses

the present state of ENSO to condition these seasonal

climatic forecasts. There are two potential problems with

using standard climate indices—such as Niño-3, PDO,

and AMO—for hydroclimatic prediction. The first

problem is that the hydroclimate of a specific terrestrial

region (e.g., a river basin) may be more strongly corre-

lated with an oceanic region’s SSTs, which is different

from the predetermined regions that are used to calcu-

late the standard indices. Historically, there have been

numerous studies that have documented broad-scale

ocean–atmosphere teleconnections that are not directly

tied to standard climate indices (Namias 1969, 1974,

1978; Kutzbach 1970; Nicholls 1980). More recently,

Tootle and Piechota (2006) use SSTs for an entire re-

gion, such as the Pacific Ocean. They use singular value

decomposition (SVD) to identify and delineate statisti-

cally significant, covarying regions between U.S. stream-

flow and Pacific SSTs. The second problem with some of

the standard indices is that a matrix methods approach

(e.g., PCA and SVD) might not preserve enough in-

formation from an original dataset. Some recent hydro-

climatic studies—such as Dettinger and Cayan (1995),

Rucong et al. (2001) and Grantz et al. (2005)—have

abandoned a matrix methods approach.

The study herein extends the Grantz et al. (2005)

methodology in the following ways. First, Grantz et al.

(2005) only use streamflow in their analysis, whereas we

also use precipitation and temperature. Given the level

of human influence along most of the rivers in the

western United States, it is important to have climatic

values to force a hydrological model, thereby obtaining

an expected naturalized volume of water. A natural

streamflow time series needs to be long enough in the

past to calibrate the model. However, if model calibra-

tion is possible, then precipitation and temperature offer

another way to independently obtain expected water

availability for a particular basin. Second, they try to

establish unique correlative relationships and potential

predictors exclusively for spring discharge at lead times

of up to six months. We include all trimonthly seasons

through the entire year and are developing potential

predictors for these seasons at up to a year ahead of time.

Third, Grantz et al. (2005) use SSTs for predicting spring

discharge at six and five months’ lead time but then

condition the predictions with snow water equivalent

(SWE) data. We are aware that a snow-dominated sys-

tem’s spring snowmelt will be very strongly influenced by

winter SWE; however, we chose to explore the raw po-

tential of using solely SSTs as predictors. We are pro-

viding one of the components that assists in constraining

expected seasonal hydroclimatic distributions. Lastly, we

use the entire oceanic domain, whereas Grantz et al.

(2005) observe the correlative structures mostly in the

Pacific and the western Atlantic Oceans.

The objective of this study is to outline a methodology

that has the capacity to improve current basin-specific

hydroclimatic predictions at the seasonal to annual time

scale. The section ‘‘Materials’’ describes the Little Col-

orado River and Gunnison River basins and the data
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used in the study. The section ‘‘Methodology’’ outlines

the basin-specific climate prediction (BSCP) approach.

The precipitation, temperature, and streamflow data

from the Little Colorado and the Gunnison are corre-

lated with global SSTs. The statistical correlative oceanic

patterns, using BSCP, are observed at different months

of the year and at different time lags. Using these sta-

tistical patterns, the SSTs from the regions that exhibit

the strongest correlation are subsequently used as pre-

dictors to perform hindcasts of each basin’s hydroclimate.

Niño-3, Niño-3.4 (58N–58S, 1908–2408E), Multivariate

ENSO index (MEI), and PDO are also used as pre-

dictors to perform hindcasts. The section ‘‘Results’’

compares the hindcast skill of BSCP to the standard

climate indices. The section ‘‘Discussion and conclu-

sions’’ highlights the results and concludes with a few

recommendations for further research on seasonal

hydroclimatic prediction.

2. Materials

a. Regions of study

The Little Colorado River is located in the Lower

Colorado River basin and comprises approximately

68 500 km2. The basin’s elevation ranges between

3850 m in the San Francisco peaks to approximately

840 m at the outlet. The Little Colorado receives as little

as 36 mm of average seasonal total precipitation during

the April–June season and as much as 127 mm for July–

September. Average seasonal temperatures historically

have ranged between 0.38C for the December–February

season and 20.88C for June–August. Streamflow for the

Little Colorado River originates in eastern Arizona and

flows northwest for almost 507 km until meeting the

Colorado River in the Grand Canyon (Fig. 1). The av-

erage yearly streamflow volume totals approximately

220 3 106 m3, with average seasonal rates being highly

variable between 80 m3 s21 to essentially no flow.

The Gunnison River is located in the upper Colorado

River basin and is approximately 20 800 km2. The ba-

sin’s elevation ranges between 4400 to approximately

1390 m at its junction with the Colorado River. The

Gunnison average seasonal total precipitation ranges

between 115 mm during the June–August season and

160 mm for February–April. Average seasonal temper-

atures historically have ranged between 29.28C for

the December–February season and 13.88C for June–

August. Streamflow originates in the Rocky Mountains

and flows west–northwest for almost 290 km until meet-

ing the Colorado River. The average yearly streamflow

volume totals approximately 2.763 109 m3, with average

seasonal rates ranging between 215 and 38 m3 s21.

b. Data

The precipitation and temperature data for the Little

Colorado and Gunnison are obtained from an inter-

polated, gridded dataset (Maurer et al. 2002). The dataset

was created as inputs to force the Variable Infiltration

Capacity (VIC) hydrological model and provides data at

a 3-h time step with a spatial resolution of 1/88 3 1/88. The
dataset covers the conterminous United States, and this

study uses the years 1951–2005. Naturalized volumetric

discharge data for the basins were obtained from the

Bureau of Reclamation (available online at http://www.

usbr.gov/lc/region/g4000/NaturalFlow/index.html). The

discharge data are provided at a monthly time step and

are used for the same overlapping 55 years as the tem-

perature and precipitation data, and the streamflows are

assumed to reflect the contribution of the whole basin.

Mean monthly SSTs were obtained from the In-

ternational Comprehensive Ocean–Atmosphere Data

Set (ICOADS) through the University Corporation for

Atmospheric Research site (available online at http://

dss.ucar.edu/). The resolution of the SST data is 28 3 28,
and the entire oceanic domain is used. To have the same

temporal domain for all of the data, the SSTs corre-

sponding to 1951–2005 are used.

FIG. 1. The Gunnison River basin shown in light gray in the state

of Colorado. The Little Colorado River basin is also shown in light

gray and residing in Arizona and New Mexico.
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c. Data preparation

To effectively and efficiently ascertain a seasonal

quantitative prediction for the Little Colorado and

Gunnison basins, seasonal values for precipitation,

temperature, and discharge at the basin scale are re-

quired. First, spatial averages are calculated. For dis-

charge, it is simply a matter of dividing the volume of

water for a given month by the area of the basin. For

precipitation and temperature, a file containing the

fractional contributions of each 1/88 grid cell is used,

where the boundary of the basin is not delineated at the

gridcell size but rather more accurate digital elevation

maps [30-m resolution obtained through the U.S. Geo-

logical Survey (USGS) site (available online at http://

seamless.usgs.gov/)], thus only fractional amounts of the

bordering grid cells will contribute. By performing

a weighted spatial average, the climatic values are not

affected by fractions of grid cells that drain out of the

basin. Each variable’s weighted averages are obtained

for their respective time steps. Second, average seasonal

temperatures and seasonal totals of precipitation and

discharge are obtained. Seasonal hydroclimate variables

are averaged or integrated values at a trimonthly reso-

lution. There are 12 trimonthly seasons, corresponding

to January–March, February–April continuing through

December–February. This yields the total seasonal sums

of precipitation and discharge, averaged across the ba-

sin, and the seasonal averages of temperature.

In the southwestern United States, seasonal tempera-

ture generally exhibits a normal (Gaussian) distribution,

whereas seasonal precipitation and discharge exhibit

skewness that corresponds well with a gamma distribu-

tion. The z values, or z scores, for seasonal temperatures

are computed by subtracting the population mean and

dividing by the standard deviation. The standardized

precipitation index (SPI) has previously been used to

convert precipitation, which exhibits a gamma distribu-

tion, to normally distributed data (McKee et al. 1993;

Kim et al. 2005). We convert cumulative densities from

the gamma distribution to SPI values by means of an

approximation provided by Abramovitz and Stegun

(1972). The same SPI algorithm is applied to obtain z

scores of discharge. There are two reasons why we

choose to normalize precipitation and discharge. First,

this allows a more accurate climate regime comparison

between two different basins. Second, our methodology

later requires Gaussian distributed data.

As a way to decrease the sparseness of the global

SSTs, and to have a second level of quality control, the

SSTs were spatially averaged on 108 3 208 latitude by

longitude moving windows. As a result, we have more

densely populated SSTs across the Pacific, at a 28 3 28

resolution, where each grid cell corresponds to a larger

108 latitude by 208 longitude window. Though we are

advocating using SST windows that are not fixed like the

Niño-3 domain, we want some consistency with the cli-

mate indices. As previously stated, the Niño-3 index is

a regional SST average between 58N and 58S and be-

tween 2108 and 2708E. Indices like Niño-3 are using

anomalies in regions greater than the gridcell size

(28 3 28) to help describe ocean–atmosphere phenom-

ena. Using a larger sample size in space, we can be more

confident that the regional variance is more accurately

depicted, thus reducing the randomness associated with

individual grid cells.

3. Methodology

a. SST–basins’ climate and discharge
correlation maps

Using SSTs as a predictor of the climate and discharge

in the Little Colorado and Gunnison, we observe the

spatial correlative structure between global SSTs and

seasonal basin variables at different temporal lags. For

example, we use January SSTs in conjunction with the

Little Colorado’s January–March precipitation to ob-

tain Pearson’s correlation coefficients at each grid cell in

the oceanic domain. Pearson’s product moment corre-

lation coefficients take the form

r5

�
n

i51
(x

i
� x)(y

i
� y)

(n� 1)s
x
s
y

, (1)

where xi and yi are individual measurements in the sample

size n, x and y are the sample means of x and y with

standard deviations of sx and sy. The correlation co-

efficients range from21 to 1, where the two variables are

most well correlated when closest to 21 and 1, with

0 having no correlation. Pearson’s correlation coefficients

are commonly used with Gaussian distributed data. The

correlation map that is created is identified by JAN-PL1

(where JAN corresponds to January SSTs, P is pre-

cipitation and L1 is the lag of the middle month of the

seasonal precipitationwith respect to the SSTmonth). The

temporal correlative structure is observed next. Correla-

tion maps are created for the other 11 seasons, at different

temporal lags behind January SSTs. Now we have maps

corresponding to JAN-PL2 through JAN-PL12. The pro-

cedure is repeated for the other 11 months of SSTs as our

predictors. Seasonal basin precipitation corresponds to 144

correlationmaps (12 SSTmonths3 12 seasonal lags). The

same procedure is performed for the Little Colorado’s

temperature anddischarge, which provides 144 correlation

maps for each of these variables (432maps total). Themap
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identification follows the same structure—for example,

FEB-TL1 andMAY-DL9 (where T is temperature and D

is discharge). The entire process is then repeated using the

Gunnison’s unique seasonal hydroclimatic time series.

Figures 2 and 3 show examples of the progression of

the oceanic correlative structures for the Little Colorado

and Gunnison, respectively. One can observe the ro-

bustness of these structures, by the consistency of the

patterns, when spring discharge is correlated with in-

creasingly earlier monthly SSTs. The most correlated

windows for the Little Colorado are predominantly lo-

cated around the equatorial Pacific. The Gunnison,

however, has a consistent correlation structure in the

North Pacific. As a result, one expects for these cases that

the ENSO indices and the PDO will be well correlated

with the Little Colorado and Gunnison, respectively.

b. Regions of high correlation

Using the correlation coefficients, the most positively

and negatively correlated windows (the 108 3 208 lati-
tude by longitude SST windows) across the globe are

identified for all combinations of months, lags, and basin

variables. Most likely, a different window will corre-

spond to each combination (although different combi-

nations do not necessitate a different window, they could

overlap, or be identical in space). Next, the larger of the

two most correlated windows, by absolute magnitude,

is used to extract the most predictive power from the

FIG. 2. Little Colorado’s structure of correlation coefficients for SSTmonths and March–May (spring) discharge at increasing lag times. The

smaller rectangles correspond to themost positively and negatively correlated regions, while the larger rectangle is that of theNiño-3 domain.
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corresponding SSTs. There are now 432 SST windows

that can be used to quantitatively predict the seasonal

hydroclimates in the Little Colorado and Gunnison—as

much as a year in advance.

How do the magnitudes of the correlation coefficients

change through the year at different lags for both basins?

Figures 4 and 5 contrast the correlative magnitude using

BSCP (the most correlated SSTs) to Niño-3, Niño-3.4,

MEI, and PDO for the Little Colorado and Gunnison,

respectively. Using only SSTs as our predictors, at re-

gions that we allow to vary in space, we find stronger

correlations than when using the other four standard

climate indices as predictors. As mentioned in the pre-

vious section, the ENSO indices have a fairly strong

correlation with spring discharge in the Little Colorado.

However, Gunnison’s spring discharge is only signifi-

cantly correlated with the PDO at lag 1. The statistical

correlation using the standard indices is further reduced

for almost all other seasons and lags. In the Little

Colorado, there are only two instances when one of the

standard indices is more strongly correlated than BSCP.

The MEI has correlation coefficients of 0.57 for OCT-

PL5 and 0.49 for FEB-DL2, whereas BSCP has 0.56 and

0.46, respectively. The BSCP observes stronger corre-

lation for all cases in the Gunnison.

c. Assessing uncertainty

An efficient way to assess the uncertainty associated

with individual predictions is by using a mixture of

Gaussians (McLachlan and Peel 2000; Wójcik et al.

FIG. 3. Same as Fig. 2 but for Gunnison.
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2006). Gaussian mixture models (GMMs) form clusters

by representing the probability density function (PDF)

of observed variables as a mixture of multivariate

Gaussian densities. The distribution is fit to the data

using an expectation maximization (EM) algorithm

(McLachlan and Peel 2000), which assigns joint prob-

abilities across x and y space in the case of a two-

dimensional scatterplot. GMMs are most appropriate to

use when it is obvious that there is more than one distinct

region where the data have gravitated—for example,

there is bimodality in the aggregation of the scatter. In

our analysis, we did not observe more than one distinct

cluster for the hydroclimatic data in the Little Colorado

and Gunnison. Hence, a GMM with one cluster is used.

It should be made clear that the GMM’s results with one

cluster are the same as would be obtained with a linear

regression. Our methodology, however, uses GMMs in-

stead of linear regression, to be more broadly applicable

to basins that could have data exhibiting nonlinearity.

The strength of theGMM regression by itself does not

say much about the predictive/hindcast skill. Therefore,

a series of Monte Carlo simulations are performed as

a robust measure to assess the model’s skill. Figure 6

provides an example of one of the simulations using the

GMM. The data in Fig. 6 corresponds to the positively

correlated window’s December SST time series and the

Gunnison’s spring discharge (upper-right plot in Fig. 3).

This scatter has a correlation coefficient of 0.54. The

bold circles in Fig. 6a, which constitute 30 randomly

chosen points from the scatter, are used to predict the

other lighter circles. These 30 points are used to obtain

the GMM (Fig. 6b). Next, a slice of the GMM is taken at

the December SST z score of one of the lighter circles

(surrounded by the larger circle in Fig. 6a). Normalizing

this slice gives the PDF and the cumulative distribution

function (CDF) of March–May discharge (Figs. 6c and

6d, respectively). The highest peak on the PDF is the

most probable discharge, whereas the corresponding

CDF is used to assess the 5% and 95% nonexceedence

discharges. Similarly, PDFs and CDFs are obtained for

all other lighter circles. These hindcasts of the lighter

circles are stored, and the points are reshuffled to yield

another random 30 bold circles to predict a new set

of lighter circles. One hundred different simulations

are performed. All of the stored values at each point

are then used to obtain average quantities of the

most probable 5% and 95% nonexceedence discharges.

Lastly, the normally distributed data is converted back

to a gamma distribution. This approach of using GMM

regression with Monte Carlo simulations was also used

to perform the hindcasts with the different climate in-

dices’ time series as predictors.

FIG. 4. Absolute magnitude of the correlation coefficients for the Little Colorado through the year and at different lags for the hy-

droclimatic variables using BSCP vs the standard climate indices. The lower limit of the colorbar is 0.27, which is statistically significant at

the 95% confidence level.
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Figure 7 shows the hindcasts of the March–May dis-

charge volume (average depth of water over theGunnison

basin) given December SSTs. The dark line shows the

observed discharge, whereas the light gray line going

through the middle is the observed mean discharge. The

circles are the most probable hindcasts, whereas the er-

ror bars correspond to the 5% and 95% nonexceedence

values. The skill of these hindcasts in contrast to the

standard climate indices and the historic hydroclimatology

is addressed in the next section.

4. Results

Twoparameters are used to assess the predictive skill of

each set of hindcasts. The parameters are model correla-

tion coefficient and the Nash–Sutcliffe efficiency (NSE).

Themodel correlation coefficient is calculatedwithEq. (1)

using modeled versus observed data. NSE is defined as

NSE5 1�
�
T

t51
(xto � xtm)

2

�
T

t51
(xto � x

o
)2

, (2)

where xo is the mean of observed values and xo
t and xm

t

are the observed and modeled values at time t, respec-

tively. The NSE has historically been used to assess the

skill that a hydrologic model has in matching observed

hydrographs. It is used here, more generally, to assess

the hindcast skill in contrast to simply using the hydro-

climatic means of discharge, precipitation, and tempera-

ture. NSE ranges fromnegative infinity to one.A value of

one is for perfect hindcasts, whereas values greater than

zero indicate when the model is performing better, or

hindcasting better, than the hydroclimatic mean. Con-

versely, values fewer than zero delineate instances when

the hydroclimaticmeanwould give better results than the

model.

Figure 8 shows the model’s performance, for the Little

Colorado, expressed as correlation coefficients that are

obtained from observed versus modeled hydroclimate

values. With darker shading, the model is more skillfully

hindcasting. Figure 9 uses the NSE to give a perspective

into how well the hindcasts are doing in contrast to the

Little Colorado’s hydroclimatic mean. Figures 10 and 11

similarly show the correlation coefficients (observed

versus modeled) and NSE values for the Gunnison, re-

spectively. Moderate hindcast skill is observed in both

basins, using BSCP, for winter precipitation and temper-

ature throughout the year at a variety of lags. BSCP also

hindcasts discharge better in both basins than using the

standard indices, though there is substantial difference in

skill between the Little Colorado and the Gunnison. The

discharge hindcasts using BSCP are much better for the

Gunnison. Possible explanations as to why we observe

significant differences in the basins’ discharge hindcasts is

discussed in the following section.

FIG. 5. Same as Fig. 4 but for Gunnison.
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5. Discussion and conclusions

This paper has explored the unique statistical relation-

ships that relate global SSTs with the Little Colorado and

Gunnison basins’ hydroclimates. The advantage of BSCP

is that it targets an oceanic region that maximizes the

correlation for a specific basin at a given time. As a result,

improvement in hydroclimatic seasonal hindcasts has

been shown over the standard climate indices.

The work presented here raises several issues that re-

quire further analysis and can be improved in three ways.

First, the weak-to-moderate skill observed for the Little

Colorado’s discharge requires improvement. This is the

result of the basin’s antecedent conditions upon entering

the hindcast/forecast season [e.g., soil moisture and snow

water equivalent (SWE)]. A basin’s storage acts as

a nonlinear filter for discharge in response to precipitation

and temperature forcings (Troch et al. 2007). During the

seasons with significant snowmelt, the Gunnison receives

on average approximately 4 times the amount of pre-

cipitation than the Little Colorado. Additionally, the

Gunnison’s temperatures are substantially lower than in

the Little Colorado. These conditions create a likely

scenario for the Little Colorado’s snowpack to quickly

melt and subsequently dry out the soil. On the other

hand, the Gunnison’s soil rarely becomes depleted of

moisture. These fluctuations in the Little Colorado’s

soil moisture have a significant effect on its discharge,

FIG. 6. Applying the GMM with Monte Carlo simulations: (a) the scatter of December SSTs and Gunnison’s March–May discharge,

where the more bold points are used to hindcast the lighter points; the lighter point that is circled will be the first point to be hindcasted;

(b) the resulting GMM; (c) the PDF that corresponds to the slice along the SST z score of the point that is circled; and (d) CDF of the

same slice.
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ultimately reducing the observed hindcast skill level. A

hydrological model can better capture the physical

processes of precipitation and temperature interacting

with differing ranges of soil moisture and SWE to pro-

duce a given discharge. Therefore, a hydrological model

could be forced with precipitation and temperature

hindcasts/forecasts from the BSCP model to produce

physically viable realizations of discharge. Seasonal fore-

casts of basin discharges, which are significantly affected

by SWE, can also be updated throughout the winter and

early spring as new SWE data becomes available. Sec-

ond, the predictors (SSTs) can be supplemented with

additional oceanic or atmospheric variables (e.g., sea

level pressures, wind vectors, geopotential heights).

The current scope of this work provides a methodology

that obtains the most correlated SST regions and es-

sentially uses a linear regression for hindcasting. This

alone has shown potential skill in forecasting. However,

rooting the predictors in multiple variables can improve

forecast skill by increasing the robustness of the meth-

odology. Furthermore, using an objective combination

of a variety of statistical methods [e.g., PCA, screening

multiple linear regression (SMLR), optimal climate

normals (OCN) or some other trend detection] on a set

of time series obtained from multiple variables using

BSCP can further increase hindcast/forecast skill sim-

ilarly to the CPC (O’Lenic et al. 2008). Lastly, the

nonstationarity of the correlative statistical patterns

requires consideration (Milly et al. 2008). Though add-

ing one additional scatter point will change the cor-

relation in a given location (in most cases), this is

a relatively slow process. With the inclusion of an ad-

ditional year of data, the correlation maps will not be

drastically altered. However, the locations of strongest

correlation will shift over time because of system dy-

namics and trending. Both SSTs and land surface

temperatures appear to be exhibiting trending (Moron

et al. 1998; Jones et al. 1999; Stott et al. 2000). If we are

going to successfully translate the BSCP methodology

from hindcasting to forecasting, then the nonstationarity

exhibited by the ocean–atmosphere–land system must

be accounted for in the process. Additionally, to better

FIG. 7. Hindcasts of Gunnison’s March–May total discharge

volume using December SSTs.

FIG. 8. Little Colorado’s correlation coefficients for the hindcasts vs observed hydroclimatic values.
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observe the evolution of these patterns, given trending,

it would be advantageous to drop or less heavily weight

older data. For example, the last 30–40 years of data

(updated each year, adding an additional year, and drop-

ping the last one) can be used to forecast next year’s

hydroclimate.

Applying BSCP across a multitude of basins, in vary-

ing climate regions, has the potential to improve seasonal

FIG. 9. NSE for the Little Colorado. The darker the shading, the more skillful the hindcasts are in comparison to the hydroclimatic mean.

FIG. 10. Same as Fig. 8 but for Gunnison.
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hydroclimatic predictions across the globe. Ultimately,

we want to know the dynamical interactions that govern

the observed statistical patterns. We are currently ob-

serving how these spatiotemporal statistical patterns

shift between basins, though this is a work in progress.

The cross-basin statistical relationships that arise could

assist in formulating a new physical understanding of

ocean–atmosphere–land interactions. If attained, im-

proved understanding of the causes of seasonal hydro-

climatic variability will greatly benefit water resources

management.
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