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ABSTRACT

Dominant spatiotemporal patterns of precipitation, modeled soil moisture, and vegetation are determined

in North America within the recent observational record (late twentieth century onward). These data are

from a gridded U.S.–Mexico precipitation product, retrospective long-term integrations of two land surface

models, and satellite-derived vegetation greenness. The analysis procedure uses three statistical techniques.

First, all the variables are normalized according to the standardized precipitation index procedure. Second,

dominant patterns of spatiotemporal variability are determined using multitaper method–singular value

decomposition for interannual and longer time scales. The dominant spatiotemporal patterns of precipitation

generally conform to known and distinct Pacific SST forcing in the cool and warm seasons. Two specific time

scales in precipitation at 9 and 6–7 yr correspond to significant variability in soil moisture and vegetation,

respectively. The 9-yr signal is related to precipitation in late fall to early winter, whereas the 6–7-yr signal is

related to earlysummer precipitation. Canonical correlation analysis is finally used to confirm that strong

covariability between land surface variables and precipitation exists at these specific times of the year. Both

signals are strongest in the central and western United States and are consistent with prior global modeling

and paleoclimate studies that have investigated drought in North America.

1. Introduction

Land surface parameters considered at the atmo-

sphere–land interface are soil temperature, snow cover,

soil moisture, and vegetation. Soil moisture and vege-

tation are expected to be the dominant land surface ef-

fects. Their variability in space and time may affect the

exchange of heat and moisture with the atmosphere.

The role of the land surface in providing feedback to

the atmosphere has been recognized on a wide range of

scales, from the local and regional to global (e.g., Chase

et al. 1996; Pielke 2001). The land surface, in turn, is

affected by the forcing provided by the atmosphere,

which is the subject of the present study. We emphasize

precipitation, as it is increasingly being used to charac-

terize drought at multiple time scales through use of

the standardized precipitation index (SPI; McKee et al.

1993). Precipitation, expressed in terms of SPI, has

known significant variability in space and time. For tem-

poral variability on the interannual to interdecadal time

scale and spatial variability on the continental scale, the

atmospheric forcing is related primarily to naturally

occurring atmosphere–ocean interactions, such as El

Niño–Southern Oscillation (ENSO).

This study investigates the statistical linkages between

precipitation and land surface parameters in North

America, specifically the contiguous United States and

Mexico, within the recent observational record (since

the late twentieth century). It is motivated by our prior

work, which investigated the role of remote sea surface

temperature (SST) forcing on climate variability in the

warm season, using both observational analyses and

regional climate modeling (Castro et al. 2001, 2007b).

The dominant global modes of sea surface temperature
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anomalies (SSTAs), related to interannual and inter-

decadal variability in the Pacific, affect the seasonal

evolution of the North American monsoon system

(henceforth NAMS) via remote forcing of the synoptic-

scale circulation or teleconnections. The summer tele-

connection patterns evolve in time and affect the onset

of the North American monsoon in late June and early

July. This conclusion is generally supported by other

studies that have investigated the issue via statistical

analyses of observations, including atmospheric rean-

alyses (e.g., Mo and Paegle 2000; Hu and Feng 2002;

Grantz et al. 2007).

Though statistically significant relationships between

the NAMS and antecedent land surface conditions—

such as snow cover and soil moisture—exist, Castro et al.

(2001; 2007b) suggest these occur more as a passive re-

sponse to the evolution of Pacific SST–associated tele-

connection patterns through an annual cycle. Thus, in

the core monsoon region (southwestern United States

and northwest Mexico), a persistent condition of warm

(cold) SST in the central and eastern equatorial Pacific

would tend to favor a wet (dry) winter and a dry and

delayed (wet and early) monsoon. By contrast, in the

Great Plains, the precipitation anomaly signal associ-

ated with Pacific SST variability is consistent throughout

the whole year (i.e., consistently wet or dry for both

warm and cool seasons). This spatial variability in warm-

season precipitation on the regional scale is realized

independently of the land surface forcing to the atmo-

sphere, and this conclusion is generally supported by

GCM studies (e.g., Schubert et al. 2002, 2004; Seager

et al. 2005) and the paleoclimate record (e.g., Herweijer

et al. 2007; Stahle et al. 2009). Considering individual

years, it is known that soil moisture and vegetation can

have strong responses to antecedent rainfall. For ex-

ample, there is a rapid greening of vegetation and in-

crease in soil moisture in the core monsoon region that

occurs after the onset of the North American monsoon

(Watts et al. 2007).

Statistical relationships between the land surface pa-

rameters and atmospheric forcing on interannual and

longer time scales exist in North America, and these

generally agree with the aforementioned GCM and

paleoclimate studies. Zhang and Mann (2005) inves-

tigated coherent patterns of variation in Northern

Hemisphere sea level pressure and conterminous U.S.

summer drought for the twentieth century using the

Palmer drought severity index (PDSI). Spatiotemporal

patterns of variability on the interannual and bidecadal

time scales are indicative of Pacific SST–associated cold-

and warm-season influences on drought patterns. Soil

moisture variability has also been analyzed directly

from hydrologic models forced with long-term observed

temperature and rainfall (e.g., Andreadis et al. 2005;

Andreadis and Lettenmaier 2006). These studies find a

multidecadal periodicity in droughts—with the most se-

vere in the last century occurring in the 1930s, 1950s, and

the late 1990s–early 2000s—as well a long-term decrease

in drought intensity (with the southwestern United

States being an exception). Leading modes of covari-

ability of satellite-derived vegetation and precipitation

also indicate a relationship with ocean–atmosphere

anomalies (Lotsch et al. 2003), with the early 2000s

drought being a period of below normal plant growth

(Lotsch et al. 2005).

This study characterizes the spatiotemporal variabil-

ity of modeled soil moisture and vegetation greenness in

North America and its relationship to long-term varia-

bility in precipitation forcing. The objectives of the study

are 1) to derive the significant spatial patterns of pre-

cipitation, modeled soil moisture, and vegetation green-

ness variability and covariability on interannual and

longer time scales; and 2) to examine the dependence of

these patterns on seasonality and to determine the

months in which the significant relationships exists and

those months in which they do not. As will be shown,

consideration of seasonality is of particular importance

to the warm season because of the existence of the time-

evolving teleconnections related to the NAMS de-

scribed our own prior work. The paper is organized as

follows: Section 2 describes the land surface and atmo-

spheric data. Section 3 outlines the statistical analysis

methods. Section 4 analyzes the dominant spatiotem-

poral patterns in the three fields. Conclusions and ad-

ditional discussion are given in section 5.

2. Datasets used for statistical analysis

a. Precipitation data

The precipitation data used are the 18 combined U.S.–

Mexico daily precipitation product produced by the

National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center (CPC; Higgins

et al. 1996) and available from 1948 to the present, and

we use these data through 2003 in this paper. These data

can be accessed online via the CPC and the NOAA

Earth System Research Laboratory. Precipitation data

have been aggregated to themonthly time scale. Though

the resolution of these data is relatively coarse, com-

pared to other precipitation products that cover just the

contiguous United States, they are used here primarily

because there is data coverage in Mexico. However, the

quality and amount of data in Mexico is generally

poorer, which can affect spatial analyses (e.g., Castro

et al. 2007b).
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b. Modeled soil moisture

Primary modeled soil moisture data, given in terms of

monthly volumetric soil water content averaged through

the entire depth of the column, are obtained from a long-

term, retrospective integration of the Variable Infiltra-

tion Capacity (VIC) land surface model, with observed

atmospheric forcing for the period 1950–2000. These

data were originally described in Maurer et al. (2002)

and are available online through the Department of

Hydrology at the University of Washington. These data

cover the standard North American Land Data Assim-

ilation System (NLDAS) domain, which includes all of

the contiguous United States and part of northern

Mexico, at 1/88 grid spacing. Similar soil moisture data

from an extended integration of the Noah land surface

model for the period 1948–98 (Fan et al. 2006) were also

used to verify the results obtained using the VIC data.

Soil moisture data are spatially degraded to 0.58 3 0.58
grid spacing before subsequent analysis, as this permit-

ted the use of multitaper frequency domain–singular

value decomposition (SVD) analysis (as described in the

next section) with available computing resources. We

emphasize that it is modeled soil moisture from retro-

spective long-term integrations of land surface models

that is being analyzed. There are processes that affect

soil moisture within all land surface models that are very

difficult to represent or not captured at all, such as

snowpack and snowmelt processes and dynamic vege-

tation. Analysis of two land surface models with differ-

ent physical representations of land surface processes

gives greater confidence that significant patterns, not

artifacts of the individual models, are being considered.

c. NDVI data

Vegetation status was analyzed using the Global In-

ventory Modeling and Mapping Studies (GIMMS)

satellite drift–corrected and NOAA-16-incorporated

normalized difference vegetation index (NDVI) dataset

(Pinzón 2002; Pinzón et al. 2004; Tucker et al. 2005).

Corrections performed to this dataset account for vol-

canic aerosols due to major eruptions in 1982 and 1991,

sensor degradation, and satellite drift. NDVI is the ratio

of the difference between the Advanced Very High

Resolution Radiometer (AVHRR) reflectance in the

near-infrared and visible bands and the sum of these two

bands; it ranges between21 and11. Green leaves have

a higher reflectance in the near-infrared band than in the

visible band as a result of stronger chlorophyll absorp-

tion in the visible band. Therefore, NDVI increases with

green leaf vegetation density: nonvegetated surfaces

have low NDVI values of around 0.2 and dense vege-

tated surfaces have a value higher than 0.7. Bimonthly

maximum value composite of GIMMS NDVI is avail-

able globally for an 8 km 3 8 km footprint from July

1981 to the present. Here we use the period 1981–2003.

These data were regridded to theRegional Atmospheric

Modeling System (RAMS) model grid used in Castro

et al. (2007a). Daily NDVI values were obtained by

linear interpolation.

3. Statistical analysis procedures

a. Variable normalization by the SPI technique

The SPI expresses the degree of dryness or wetness

for a given location as a standard normal variable. It is

increasingly gaining favor as a primary indicator of

drought in climate monitoring (e.g., Heim 2002). There

are two principal motivations for using the SPI in lieu of

raw precipitation. First, it accounts for the fact that

precipitation amounts for any given length of record

typically follow a gamma distribution, not a normal

distribution. This is especially the case for the dry cli-

mates of the interior western United States, where the

index was originally developed. Second, it can be com-

puted for a variety of time scales, typically from 1 to 24

months, to characterize short- or long-term drought

conditions. In this study, the 1–6-month SPI is consid-

ered, using the CPC U.S.–Mexico precipitation data.

Results are shown in section 4 for the 1- and 3-month

SPI. The SPI is computed according to the original

methodology in McKee et al. (1993) and Edwards and

McKee (1997).

The same methodology used to compute the SPI is

also applied to soil moisture and NDVI. Although there

are few examples of application of the SPI analysis

technique to other variables, it was recently completed

for streamflow in Arizona (Schonauer 2007). A gamma

distribution provides a more robust description of the

distribution of land surface parameters because these

are driven, in great part, by precipitation. It is also in-

appropriate to consider the raw averages and standard

deviations of both soil moisture and vegetation green-

ness in the investigation of large-scale spatiotemporal

variability because they can vary greatly in space be-

cause of rapid shifts in bioclimatic regimes associated

with complex terrain. Unlike precipitation, a standard-

ized index measure for a given land surface variable—

soil moisture or NDVI—is computed only on a monthly

time scale, not multiple months.

b. MTM–SVD analysis

Once the precipitation and land surface variables have

been normalized using the SPI technique, we want to

determine their dominant spatiotemporal patterns of
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variability. A multitaper method (MTM) frequency

domain–SVD analysis allows for the detection and re-

construction of quasi-oscillatory spatiotemporal signals

that exhibit episodes of spatially correlated behavior,

and it has demonstrated utility in a wide variety of

geophysical applications (Rajagopalan et al. 1998). It

produces 1) a local fractional variance (LFV) spectrum

of the principal eigenmode; 2) statistical confidence

intervals for the LFV spectrum; and 3) reconstructed

patterns corresponding to the significant time-varying

modes, referenced to a particular grid point within the

domain. The specific details and references for the

method are included in the appendix. We previously

used this technique in Castro et al. (2007b) to charac-

terize global SSTA patterns, and these results largely

agreed with the dominant modes of a rotated EOF

analysis. Typically when MTM–SVD has been used in

climate research applications, as is the case here, of

principal interest are low-frequency oscillations on the

interannual to multidecadal time scales. Therefore,

variability at a frequency greater than 0.5 yr21 is not

shown on the LFV spectrum.

MTM–SVD analysis is applied to the each of the nor-

malized datasets in the following way: The analysis is

first applied to the total dataset. For example, using a

period of 50 yr, the analysis would be performed on

600 maps of monthly data. This provides a ‘‘first cut’’

analysis to reveal any statistically significant spatiotem-

poral signals. Then, to reveal which time(s) of year

drives a particular signal in the LFV spectrum, the

analysis is applied only for one month per year. So,

following on the previous example, 12 new analyses

would be performed on 50maps, generating an individual

LFV spectrum per month. Performing the analysis in this

way implicitly emphasizes the existence of time-evolving

teleconnections, which affect North American climate

over very ‘‘narrow’’ windows of time (e.g., Figs. 5 and 6

of Castro et al. 2007b).

Reconstructed spatial patterns corresponding to the

significant time-varying modes are then obtained for

the SPI. In accordance with Rajagopalan et al. (1998),

the pattern reconstruction map is shown as a vector plot

referenced to a user-defined reference grid point within

the analysis domain. The length of the vector gives the

magnitude of the normalized anomaly, which projects

into the given significant frequency band, and the vector

direction represents the degree of phasing with respect

to the reference grid point. A grid point completely in

phase with the reference grid point would show a vector

pointed directly eastward. In the plots shown, the in-

phase component is also shaded, as in Fig. 1 of Castro

et al. (2007b). The specific reference grid point we chose

FIG. 1. Principal eigenmode LFV spectrum for the 3-month SPI computed from the CPC

U.S.–Mexico precipitation dataset (1948–2003). Dashed lines indicate statistical significance at

the 90%, 95%, and 99% confidence intervals. Significant spectral peaks and their appropriate

corresponding time scale are indicated.
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is located in the central United States (approximately

368N, 97.58W), as this is an area where there is a con-

sistent and statistically significant relationship of pre-

cipitation with Pacific SSTs throughout the year (Castro

et al. 2001).

For (standardized) modeled soil moisture and NDVI,

the reconstructed spatial patterns are shown a bit dif-

ferently. First, the reconstructed time series corre-

sponding to the significant frequency band of the

standardized data is constructed for all grid points in the

analysis domain. These data are regressed on the origi-

nal time series. Then, the regression coefficient is di-

vided by the average value of the original variable to

produce the percentage difference from climatology.

This quantity is then displayed with phasing informa-

tion as a vector plot. The advantage to displaying the

reconstructed spatial patterns in this way, rather than

the direct result from the analysis of standardized vari-

ables as with the SPI, is that areas in which significant

low-frequency signals in land surface parameters are

largest with respect to their climatological values are

emphasized.

c. Canonical correlation analysis

Once the dominant spatiotemporal patterns of pre-

cipitation and land surface variables are determined by

MTM–SVD, their covariability is assessed using CCA

for the specific periods of the year, with the most statis-

tically significant signals as indicated by LFV spectra. The

specific methodology used for CCA follows Barnett and

Preisendorfer (1987), as summarized by D. Hartmann in

online course notes (available online at http://www.atmos.

washington.edu/;dennis/552_Notes_ftp.html). First,

principal component (PC) analyses are performed on

two spatial fields with the same time dimension—namely,

the SPI and either soil moisture or vegetation greenness.

SVD is then performed on a covariance matrix of

truncated principal components. The canonical corre-

lation spatial pattern maps are computed by correlating

the original data with its singular vectors, or expansion

coefficient time series, for each data field obtained by

SVD. The singular values obtained by SVD yield the

canonical correlations. In displaying the spatial pat-

terns of the canonical correlations, we show the ho-

mogeneous correlation maps of the first canonical

vector only. It is not clear how to determine how many

principal components to retain in CCA using the Bar-

nett and Preisendorfer method. For our analysis, the

canonical vectors are considered to represent physically

reasonable patterns of covariability if the first canonical

correlation is approximately 0.4–0.5, the spatial patterns

in the homogeneous correlation maps resemble the dom-

inant spatiotemporal pattern of the individual variables,

and the homogeneous correlationmaps are fairly invariant

FIG. 2. Reconstructed spatial pattern vectors corresponding to significant spectral peaks in the 3-month SPI from Fig. 1, referenced to a

grid point in the central United States (368N, 97.58W). Reconstruction of 25-yr peak omitted, as stated in the text. In-phase component

shaded with scaling indicated by the grayscale bar. Vector length is 0.5.
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FIG. 3. Same as Fig. 1 but for the 3-month SPI of individual months. Only statistically significant peaks corresponding

to the entire dataset in Fig. 1 are indicated.
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FIG. 3. (Continued)
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FIG. 4. Same as Fig. 3 but for the 1-month SPI of individual months.
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FIG. 4. (Continued)
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with an increase in the number of retained PCs. CCA

analyses are performed as a check to confirm the fact

that strong covariability exists between precipitation

and land surface variables at specific times of the year.

4. Dominant spatiotemporal patterns of variability
and covariability

a. SPI

The LFV spectrum for the complete dataset of the

CPC U.S.–Mexico 3-month SPI is shown in Fig. 1. The

same analysis of the SPI for time scales from 1 to 6

months was performed, and the results were similar for

all cases. The LFV spectrum in Fig. 1 shows significant

peaks above the 90% confidence interval at the follow-

ing approximate time scales: 25, 6–7, 4.3, and 2.1–2.3 yr.

In addition, there is a distinct peak at the approximately

9-yr time scale, though it reaches just short of the 90%

confidence interval. This peak is important because it

relates to soil moisture variability, as will be shown in

the next subsection. The reconstructed spatial patterns

corresponding to the significant peaks in the LFV

spectrum, including the 9-yr peak, are shown in Fig. 2.

Notice that the reconstructed spatial pattern corre-

sponding to the 25-yr time scale is omitted in Fig. 2

because it is not distinct from a trend, and drastic dif-

ferences can be seen in the spatial pattern at the U.S.–

Mexico border related to the quality of the Mexican

precipitation data, as mentioned in Castro et al. (2007b).

Of greatest interest are the 6–7- and 9-yr bands, be-

cause they approximately correspond with the significant

variability in vegetation and soil moisture, respectively,

as will be shown in the next subsections. The 3-month

SPI within the 6–7 band is tied to variability in Pacific sea

surface temperatures. The spatial pattern reflects the

well-known North American cool-season precipitation

relationships associated with ENSO (e.g., Ropelewski

and Halpert 1986). In-phase precipitation anomalies

with the reference grid point are strongest in the central

and southwestern United States (more precipitation is

favored in an El Niño year). Out-of-phase anomalies

are strongest in the Pacific Northwest and Tennessee

andOhio River Valleys (more precipitation favored in a

La Niña year). The 9-yr band, on the other hand, does

not bear a resemblance to the traditional ENSO-related

precipitation pattern. Rather, precipitation anomalies

are generally in phase with the reference grid point

everywhere and are maximized in the central United

States. This is important because it indicates that

anomalously wet or dry conditions associated with this

frequency band are generally experienced throughout

the entire contiguous United States, and not just con-

fined to one region. The other higher frequency bands

at 4.3 and 2.1–2.3 yr also do not bear much resemblance

to the ENSO precipitation pattern. Similar higher-

frequency signals were not found in soil moisture or

vegetation, so these are of much lesser interest.

The LFV spectra for the 3- and 1-month SPI bymonth

are shown in Figs. 3 and 4 , respectively. Notice in these

figures that only the statistically significant peaks that

appear in the entire dataset in Fig. 1 are highlighted and

that the same statistical confidence intervals are used.

The analysis of the data in this way for the different SPI

time scales reveals several interesting points that cannot

be ascertained from an analysis of the entire dataset in

Fig. 1. The statistically significant signals in the 3-month

SPI are mostly related to cool-season precipitation (fall

through spring), as the most statistically significant sig-

nals in the monthly LFV spectra appear in this window.

There is statistically significant variability in the SPI at

the relatively low 9–12-yr frequency during the fall

months; the higher-frequency 4.3 and 2.1–2.3-yr signals

appear most predominantly in January, February, and

March, and the 6–7-yr (ENSO related) signal is apparent

in March, April, and May. There is little, if any, statis-

tically significant signal in the 3-month SPI during the

warm season, except in September, when there is a

weakly significant signal (barely exceeding the 90%

confidence interval) in 6–7-yr band.

Considering themonthly LFV spectra for the 1-month

SPI (Fig. 4), peaks in the LFV spectra described earlier

for the 3-month SPI are generally less significant. Of

greatest interest is that the 6–7-yr signal is no longer

significant in the spring months, with the exception of

May. There are two months, however, when large and

very statistically significant signals (exceeding the 99%

confidence interval) appear that do not exist in the

3-month SPI. The first occurs during the month of July

at a time scale of 6–7 yr. This signal then completely

disappears during the month of August. The second

occurs during the month of October at a time scale of

approximately 9–15 yr. These very strong signals in

the 1-month SPI are realized as more muted signals in

the 3-month SPI monthly LFV spectra in subsequent

months. The 1-month July SPI signal appears in the

3-month September SPI, and the 1-month October SPI

signal appears in the 3-month November SPI and the

3-month December SPI. It will be shown that the vari-

ability in the SPI for these periods is the key reason for

the long-term soil moisture and vegetation variability.

The reconstructed spatial patterns corresponding to

these two signals for the 1- and 3-month SPI are fairly

consistent and are shown in Fig. 5. The 1-month July SPI

and the 3-month September SPI signal correspond to

significant variability in summer precipitation at a 6–7-yr
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time scale. Though this is the same time scale that cor-

responds with the winter ENSO precipitation signal as

shown in Fig. 2, the spatial pattern is completely dif-

ferent. Precipitation anomalies in phase with the refer-

ence grid point occur throughout the central United

States, and out phase anomalies occur throughout the

southwestern United States. This spatial pattern of pre-

cipitation variability in the warm season is a conse-

quence of time-evolving teleconnections associated with

Pacific SSTAs that affect the timing of the NAMS. As

shown in Figs. 8 and 9 of Castro et al. (2007b), these

teleconnections significantly affect precipitation over

the United States during the monsoon onset period in

late June and July, but then they quickly wane in August.

The dramatic change in the 1-month SPI LFV spectra

between July and August shown in Fig. 4 is completely

consistent with this idea. The 1-month October SPI and

the 3-month December SPI signals correspond to sig-

nificant variability in fall precipitation at the approxi-

mately 9–12-yr time scale. As previously mentioned, this

signal does appear as a peak in the complete 3-month

SPI LFV spectrum in Fig. 2, though it is not significant at

the 90% confidence interval.

b. VIC and Noah soil moisture

The LFV spectrum for normalized VIC soil moisture,

considering the entire period of record, is shown in

Fig. 6. A significant peak (exceeding the 95% confidence

interval) in the spatiotemporal variability occurs at

approximately the 9-yr time scale. Another significant

peak occurs at approximately 25 yr, but this peak is

discounted because it is not distinguishable from a long-

term trend and its corresponding spatial pattern reflects

data quality problems at the U.S.–Mexico border. The

same analysis was performed on the Noah soil mois-

ture with a similar result (also shown in Fig. 6), though

the 9-yr peak is barely significant at the 90% confidence

level. However, given the fact that Noah and VIC are

different land surface models and the analysis periods

considered are slightly different, the comparison is still

quite good.

The spatial pattern corresponding to the 9-yr band for

VIC soil moisture is shown in Fig. 7. The spatial pattern

is very similar to the 9-yr band in the 3-month SPI pre-

viously shown in Fig. 2, with variability again maximized

in the central United States. A similar result was ob-

tained with the Noah soil moisture data (not shown). In

the central United States, soil moisture can vary ap-

proximately 10%–20% around its climatological value

with respect to variability at this time scale. Consider-

ation of the VIC soil moisture LFV spectrum by month

(Fig. 8) shows that the significant 9-yr signal occurs only

in November and December, just as in the 3-month SPI

(cf. Fig. 3). CCA was performed on the average of the

3-month November and December SPI and the aver-

age of November and December VIC soil moisture.

FIG. 5. Same as Fig. 2 but for specific 1- and 3-month SPI signals in monthly data from Figs. 3 and 4 that correspond to significant

spatiotemporal variability in soil moisture and vegetation greenness. Vector length is 1.
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Fourteen principal components were retained to gen-

erate a canonical correlation of 0.48 for the first mode.

The homogeneous correlation maps for the first canon-

ical vector are shown in Fig. 9. The first canonical cor-

relation indicates a continental-scale pattern of rainfall

positively related with soil moisture, and the covari-

ability with soil moisture is strongest in the central

United States. This result is generally consistent with the

spatial patterns of the SPI (Fig. 2) and soil moisture (not

shown) variability at the 9-yr time scale in the fall season

from MTM–SVD. Therefore, significant long-term

spatiotemporal variability in soil moisture in the con-

tiguous United States appears to be related to decadal

variability in late fall to early winter precipitation.

The time series of VIC soil moisture and the 3-month

SPI in the 9-yr band with respect to the reference grid

point (Fig. 10) show minima in the mid-1950s, mid-

1960s, late 1970s, late 1980s to early 1990s, and late

1990s to early 2000s. In general, these periods corre-

spond very well to the aforementioned periods of

drought in the central and western United States men-

tioned in the introduction, with the longest of these

FIG. 6. Same as Fig. 1 but for VIC soil moisture (1950–2000) and Noah soil moisture (1948–98).
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droughts being in the mid-1950s and late 1990s to early

2000s. As evidenced by the aforementioned references

with respect to both global model simulations and the

paleoclimate record, the occurrence of such droughts is

driven by La Niña–like conditions in the tropical Pacific

and/or warm SSTs in the Indian Ocean. As Fig. 7 sug-

gests, the drought signal during such times is generally

coherent throughout the contiguous United States and

maximized in the central and western United States.

This is certainly true of the most severe droughts in the

paleoclimate (i.e., tree ring) record (Herweijer et al.

2007).

c. GIMMS NDVI

The LFV spectrum for the entire record of normalized

U.S.–Mexico NDVI is shown in Fig. 11. Notice that

because the NDVI record is about half the length of

the soil moisture record, only spatiotemporal variability

on a time scale less than about 10 yr can be assessed.

Even given the relatively short length of the NDVI

record, a fairly significant peak in the LFV spectrum is

present at the 6–7-yr time scale (exceeding the 95%

confidence interval). Recall that this is the time scale

that is associated with both the well-known ENSO

precipitation signal in late spring and the distinctly dif-

ferent early summer precipitation signal associated with

the NAMS, also related to Pacific SSTAs. If, similar to

soil moisture, the spatiotemporal variability of vegeta-

tion greenness is tied to the precipitation variability at

the same time scale, the question is then which of the

two precipitation signals in the 6–7-yr band is more

strongly related to vegetation: the one in spring or the

one in early summer?

The spatial pattern corresponding to the 6–7-yr band

for the entire NDVI record is shown in Fig. 12. Al-

though the percentage differences in NDVI from cli-

matology are modest compared to soil moisture, it is the

spatial pattern of variability that is probably more im-

portant. The largest signals in NDVI variability (greater

than 10% difference from climatology) occur in the

southern Great Plains, north-central Mexico, and the

southwestern United States. There is a strong out-of-

phase relationship between these regions, and the con-

trast between them is quite sharp in terms of their rel-

ative distance from each other. We note that the spatial

pattern is not entirely consistent over areas where irri-

gation may be a large contributing factor in vegetation

greenness (Ozdogan and Gutman 2008). Namely, in the

Great Plains, the signal abruptly changes for a few lo-

cally isolated grid points. Despite this, the spatial pat-

tern as a whole still appears to reflect differences in

precipitation associated with the NAMS with respect to

Pacific SSTAs—and not the late spring signal. The

month-by-month LFV spectra of NDVI confirm this

conclusion (Fig. 13). There is no statistically significant

signal in the 6–7-yr band until the month of August, and

the spatial pattern of August NDVI in the 6–7-yr band is

nearly identical to Fig. 12 (not shown). It should also be

noted that a statistically significant signal in NDVI oc-

curs in October, but its spatial pattern does not resemble

Fig. 11 (not shown). It is the NDVI during the warm

season that is more important, in any case, as this is the

period of where vegetation greenness is at a maximum.

Though the statistically significant signal in summer

precipitation variability occurs in July and then disappears,

according to the 1-month SPI (Fig. 4), the response in

FIG. 7. Same as Fig. 2 but for VIC soil moisture. Vector magnitude and in-phase projection

shading expressed as a percentage difference from the soil moisture climatology. Vector length

is 8%.
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the vegetation occurs one month later in August. Thus,

the vegetation greenness appears to respond to varia-

bility in precipitation with a delay of several weeks to a

month. As mentioned, the vegetation response to pre-

cipitation in individual years in the core NAMS region

also has a similar time delay (Watts et al. 2007), thus the

results here are quite physically reasonable, especially

given the biweekly time resolution of the NDVI

FIG. 8. Same as Fig. 3 but for VIC soil moisture.
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product. To confirm this linkage between early summer

precipitation and NDVI, CCA was performed on the

1-month July SPI and August NDVI. Retaining the first

eight principal components, the canonical correlation of

the first mode is 0.47, and the homogeneous correlation

maps are shown in Fig. 14. The first canonical correla-

tion clearly reflects an inverse relationship for both

precipitation and vegetation greenness between the

FIG. 8. (Continued)
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central United States and the core monsoon region that

is consistent with remote Pacific SST forcing (e.g., Castro

et al. 2001, 2007b), even given the relative short satellite

observational record. The relationship of August vege-

tation greenness to early summer precipitation is also

consistent with a 2100-yr tree-ring record from El Mal-

pais, New Mexico, which constructed cool- and warm-

season precipitation considering early versus late wood

tree-ring growth (Stahle et al. 2009). This paleoclimate

record shows distinctly different interannual variability

in the summer monsoon precipitation signal there com-

pared to the cool season and a connection of monsoon

precipitation to Pacific SSTAs in a manner consistent

with the aforementioned modern record. Though it is

just from one location, the El Malpais record strongly

suggests that the vegetation response in Figs. 12 and 14 is

a robust feature of NAMS interannual variability that

has existed for thousands of years.

Aside of the likely influence of irrigation, there is one

more subtle, but important, characteristic to the NDVI

spatial pattern maps in Figs. 11 and 14. The stronger

vegetation response to interannual variability of mon-

soon precipitation generally occurs at lower elevations

in the western United States. In Arizona, for example,

there is very little change in August NDVI from clima-

tology (3% or less) along the Mogollon Rim, the

mountain range that extends from approximately the

southeast to northwest part of the state (Fig. 12). How-

ever, in the low deserts, in the southwest part of the

state, the change in NDVI is greater than 10% from

FIG. 9. Homogeneous correlation maps of average November–December (top) 3-month SPI

and (bottom) VIC soil moisture with first canonical correlation vector. Fourteen PCs are re-

tained in the CCA. The canonical correlation of this first mode is 0.48.
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climatology (Fig. 12). Though it is a desert, there is still

quite a bit of vegetation cover and, as mentioned, this

area can green up relatively quickly after substantial

monsoon rains. Recent research by Bieda et al. (2009)

also shows that wetter monsoon years are characterized

by an increased occurrence of synoptic disturbances in

the southwestern United States. This is a typically nec-

essary condition to cause terrain-induced convection to

organize and propagate westward toward the Colorado

River Valley and Gulf of California.

5. Conclusions and discussion

The main goal of the present study is to determine the

dominant spatiotemporal patterns of precipitation that

force long-term variability in soil moisture and vegeta-

tion. The analysis procedure used three statistical tech-

niques. First, all the variables analyzed were normalized

according to the SPI procedure. The SPI transformation

works well for precipitation, and, by extension, land

surface variables forced by precipitation because they

do not exhibit normal distributions. This is especially

true in the drier climates of the western United States.

Second, the dominant patterns of spatiotemporal vari-

ability in all variables were determined using MTM–

SVD for interannual and longer time scales. Separate

MTM–SVD analyses considered the entire length of a

given data record and individual months. Third, the

CCA technique is used to assess the covariability be-

tween the SPI, soil moisture, and vegetation greenness.

TheMTM–SVD analyses of the SPI at 1- and 3-month

time scales produce physically reasonable spatiotem-

poral patterns that generally conform to Pacific SST

forcing on interannual and longer time scales. Two

specific time scales were emphasized that correspond to

significant spatiotemporal variability in soil moisture

and vegetation. First, there is a 9-yr signal that is asso-

ciated with maximum precipitation anomalies in the

central United States and in-phase precipitation anom-

alies over most of the rest of the country. This signal is

related to variability in precipitation in the late fall to

early winter period and is associated with the occurrence

of major droughts in North America, such as in the mid-

1950s and late 1990s to early 2000s. The significant

spatiotemporal variability in soil moisture corresponds

to this precipitation forcing, and the signal is present in

both the VIC and Noah data. Second, there is a 6–7-yr

signal that is associated with two distinctly different

patterns of precipitation anomalies in the cool and warm

seasons. The cool-season pattern is more reflective of

wintertime precipitation relationships with ENSO. This

is the dominant pattern when considering the entire

FIG. 10. Time series of reconstructedVIC soil moisture (solid) and 3-month SPI (dashed) in the

9-yr band at the central U.S. reference grid point (368N, 97.58W). Period is 1950–2003.
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precipitation record. The warm season pattern is re-

flective of the interannual variability of the NAMS

in relation to tropical and north Pacific SSTs, and it is

only revealed by analysis of precipitation data by in-

dividual month. It is the warm-season monsoon pattern

that drives the significant spatiotemporal variability in

vegetation, with an approximately 1-month time delay

in the vegetation response. A stronger vegetation re-

sponse occurs at lower elevations in the western United

States.

Though these results clearly show that large-scale

patterns of land surface variability in North America

are forced by the atmosphere on interannual and lon-

ger time scales, we emphasize that the potential land

surface forcing to the atmosphere has not been ex-

plicitly addressed within the present study. Observa-

tions and modeling studies have shown that the

atmosphere is affected by soil moisture conditions via

the exchange of energy and water (e.g., Pielke 2001;

Pitman 2003). The effect of antecedent soil moisture

FIG. 11. Same as Fig. 1 but for GIMMS NDVI (1982–2003).

FIG. 12. Same as Fig. 7 but for GIMMS NDVI. Vector length is 4%.
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conditions on precipitation could be very important,

particularly in the warm season when most of the pre-

cipitation is due to convective processes, driven in great

part by land surface heterogeneity. The complex nature

of the soil moisture–precipitation relationship is quite

apparent from recent work that has investigated soil

moisture–precipitation feedbacks in North America

and globally. Findell and Eltahir (1997) found a posi-

tive feedback during the summer using soil moisture

observations from Illinois. Other regional climate

model (RCM) sensitivity-type studies have also been

focused on the central United States, mostly on years

with extreme climate conditions, such as the 1988

drought and 1993 flood (e.g., Pan et al. 1996; Hong and

Pan 2000). These studies have suggested a positive

feedback, but the effect of soil moisture anomalies on

precipitation is locally confined. RCM studies have

investigated the core monsoon region with similar re-

sults (e.g., Small 2001; Kanamitsu and Mo 2003).

However, other work suggests that there may be no

feedback, (e.g., Georgakakos et al. 1995; Salvucci et al.

2002) or that the feedback may actually be negative

(e.g., Giorgi et al. 1996; Paegle et al. 1996; Wei et al.

2008). Of relevance to the conclusions here, Wei et al.

(2008) recently showed that within the context of a

general circulation model, intraseasonal variability in

precipitation has a negative relationship with ante-

cedent soil moisture. They attribute this to the fact that

intraseasonal variability is dominated by global-scale

atmospheric oscillations that are entirely independent

of land surface forcing.

Limitations inherent to observational and modeling

studies when analyzing soil moisture–precipitation

feedbacks include sparse spatial and temporal resolu-

tion in soil moisture observations, or lack thereof; model

domain size and grid spacing; and model parameteri-

zation schemes, such the convective parameterization

or boundary layer schemes. In addition, some of the

methodologies used have limitations in detecting a

feedback signal—namely, the persistence of precipita-

tion cannot be distinguished when using simple lagged

correlation analyses. More complex methods of assess-

ing the presence of the signal, such as to test for Granger

causality (Salvucci et al. 2002) or nonparametric tests

(Alfieri et al. 2008), have recently been used to ad-

dress the issues of autocorrelation in the precipitation

data.

A hypothesis posed in Castro et al. (2001; 2007b)

stated that the influence of the land surface forcing, like

the remote SST forcing, is time dependent, becoming

more important at certain times of the year than others.

The late summer period, when the early summer tele-

connection Pacific SST–related patterns diminish, is a

good example. At this time, the amount of precipitation

due to recycled moisture from land surface soil evapo-

ration and transpiration from plants increases in the core

monsoon region and central United States, as suggested

by some observational and global modeling studies (e.g.,

Brubaker et al. 2001; Bosilovich et al. 2003; Dominguez

et al. 2008). In particular, Dominguez et al. (2008) ap-

plied a dynamical precipitation recycling model to the

North American Regional Reanalysis to diagnose the

percentage of precipitation due to local surface water

vapor fluxes in the core monsoon region through the

warm season. The recycled moisture from the land sur-

face becomes more important during the latter part of

the summer and can account for up to 20%of the rainfall

in mid-August during active monsoon years. Other

studies incorporating satellite-derived or dynamic veg-

etation in RCMs have demonstrated the importance

of vegetation, and, like the aforementioned soil mois-

ture RCM studies, these also tend to be sensitivity-type

studies focus on one or several years (e.g., Lu and

Shuttleworth 2002). In agreement with the hypothesis

of a time-varying influence of the land surface forcing,

Lu and Shuttleworth (2002) found that with a more re-

alistic model representation of vegetation, increases in

precipitation are maximized in the latter part of the

summer.

MTM–SVD does work to obtain the significant spa-

tiotemporal patterns on the large continental-scale do-

main used here. However, if, as RCM studies suggest,

the influence of land feedback to the atmosphere is

more locally confined, MTM–SVD as used here will

not capture this effect. For example, increased vege-

tation in the core NAMS region during wet monsoon

years may supply additional atmospheric moisture dur-

ing the month of August, as suggested by Lu and

Shuttleworth (2002) andDominguez et al. (2008).Rainfall,

therefore, may increase locally because of this addi-

tional moisture, through the creation of local thunder-

storms andmesoscale convective systems (e.g., Carleton

et al. 2008a,b), but the effect will be generally confined

to the area where the enhanced vegetation growth oc-

curs and may not contribute to any statistically signifi-

cant pattern on a continental scale. Our future work will

incorporate the satellite-derived NDVI product used

here in the warm-season regional climate model simu-

lations of Castro et al. (2007b), replacing the climato-

logical specification of vegetation used in those original

model simulations. Analysis of precipitation from these

new model simulations should reveal whether a more

realistic representation of vegetation has an effect on

model-simulated rainfall patterns and amount for the

period of the satellite NDVI record, particularly in the

latter part of the summer.
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FIG. 13. Same as Fig. 3 but for GIMMS NDVI.
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FIG. 13. (Continued)
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APPENDIX

Summary of the MTM–SVD Method

The following is a brief summary of the MTM–SVD

method and follows from Mann and Park (1994, 1996)

and Rajagopalan et al. (1998). The specific analysis

routines are freely available online from Dr. Michael

Mann at the Pennsylvania State University and are the

same used in Rajagopalan et al. (1998). An identical

summary was also given in Castro et al. (2007b).

For the given time series y (SPI, soil moisture, or

NDVI, in this case) a set ofK orthogonal data tapers and

K-associated tapered Fourier transforms (eigenspectra)

is determined at each frequency f by

FIG. 14. Homogeneous correlation maps of the (top) 1-month July SPI and (bottom) August

NDVIwith first canonical correlation vector. Eight PCs are retained in the CCA. The canonical

correlation of this first mode is 0.47.

1376 JOURNAL OF HYDROMETEOROLOGY VOLUME 10



Y
(m)
k ( f )5�

N

t51
w

(k)
t y

n
ei2pftDt, (A1)

where Dt is the sampling interval (1 month); w
(k)
t

n oN
t51

is

the kth member in an orthogonal series of (Slepian) data
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grid points with data; and N is the length of the time

series. Only the first k5 2p 2 1 data tapers are usefully
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where w represent gridpoint-specific weightings for

latitude. A complex SVD is performed on the previous

matrix,

A( f ) 5 �
K

k51
l
k
( f )u

k
( f )� v

k
*( f ), (A3)

where an asterisk denotes the complex conjugate. Here,

lk describes the relative fraction of total variance ex-

plained by the kth mode, its associated left eigenvector

uk* represents the spatial EOFs, and vk describes the

spectral EOFs.

Within the scale of resolvable frequencies, the frac-

tional variance explained by the kth mode, or LFV, is

l2k/�
K

j5 kl
2
j . Significance of peaks in the LFV spectrum are

obtained through a bootstrapping procedure in which

the noise at each gridpoint time series is assumed locally

white over the bandwidth of eigentapers. In the boot-

strap procedure, the spatial fields are randomly re-

sampled 1000 times. The reconstruction of the

spatiotemporal signal corresponding to the statistically

significant frequencies in the LFV spectrum is described

in appendix B of Mann and Park (1994).
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