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Motivation:
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Multi-model schematic:
not a straight forward process!
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Ultimate goal: long-term reliable future water
management data for drought planning for water
resource management, agriculture and natural
hazards, i.e. floods, severe weather, wildfire




>\

I}
g o

g o
9 g g
a a

B A
RSUEBVIRTN e
Saskatoon S\

/ “dmontos
4 ﬁ‘ ; :

Twabpey owxn
cuwiopey own
ou'bas’Twod Jeou
0 £wWsdD Jedu

ez £ zwobo 1w
gweysa dw
saJpaw g £iod4iw
sadIy ¢ £o041w
W |sdl

0 Swouwul
puwieysa” aAbui

670 Ts|eoby del
12 |]opowssib

y o |2pow ssib
woe ssib

T cwo |psb

0 zwd|psb

0 €)W odiso

LD WU
€91 1T swobo ewdon
1 £wo2bo ewodd
‘0 zw>dq 4029

Tw> 20q

Historical GCM petforrmmanee doxl (2009)

Southwest U.S.

dgem1

ncar_pcml

ukmo_hadcm3

Assessment Report (released 2007)

Introducing IPCC GCM products
Intergovermental Panel on Climate Change (IPCC) 4t
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Linkage between GCM and RCM: Dynamical downscaling
(more details see Carrillo et al. poster)
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Does the model capture the precipitation climatology?
Historical June/July precipitation (obs vs. MPI vs. WRF-MPI)
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Seasonal forecast:
_value added with dynamical downscaling

gional domains

 Overall CFS dynamical downscaling leads to
improvement in early warm season seasonal
forecast precipitation, especially in Mexico!
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Lower Colorado River Basin- Salt and Verde

Streamflow simulations:

e Salt River Near Roosevelt Dam
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* Verde Above Horseshoe Reservoir
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Variable Infiltration Capacity (VIC) Hydrological Model

Input: Precipitation, Temperature,
Pressure, Vapor Pressure, Wind,

Shortwave and Longwave Radiation and
Albedo
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Output: e.g., Streamflow (fast and slow

Baseflow Curve

d1 W+da(W-d3)#

components), SWE, Evapotranspiration,

Baseflow

...................... and Soil moisture content
d3

Deep layer soil moisture, W

e  Suitable for large basins
*  Subgrid variability of: Vegetation, Soil moisture storage, Topography and Precipitation
*  Energy and water balance

*  Resolution 1/8 deg , 6-hourly



Preparing RCM data for VIC

RCM precipitation and temperatures were:

e rescaled to a 1/8 degree grid using an area

weighted average

Bias-Corrected using a Quantile method*
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Why not bias-correct raw GCM data?

e Bias correction could be done for the raw GCM, however,
results will not have any interannual variability, because of the
GCM'’s poor performance in representing monsoon
precipitation.

[ Downscaled products capture the interannual variability }

REQF1[JA,SPI(WRF —MPI)] 28.1% (1950~00)
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Hydrology model result: Salt River Basin (50 year

climatology, monthly average)
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Summary

Dynamical downscaling adds value to climatology and interannual
variability. Especially better representation in the warm season.

Hydrology model is able to produce reliable historical streamflow
and evapotranspiration trends for the lower Colorado River basin

Combination of natural variability and climate change is likely
causing a more extreme climate, more intense wet/dry events,
2011 is a great example.

Ongoing task: develop a integrated modeling system for hydrologic
projections with bias correction for the future.

Ultimate goal: Utilize the unique signatures of our multi-model
multi-scale product to gain a clear insight of the future water
resource projection
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What is the trend of future precipitation in
Southwest U.S.? )
Region 2 (Arizona)
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10 Hypothesis: Increased extreme

precipitation events. Intensified
rainfall/intensified drought

Precipitation (mm)
op) oo
o o

N
O
I

20~

J FMAMJI J A S O N D



Thank you

hchang@atmo.arizona.edu
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