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Importance of Understanding Summer
Climate in North America

Phenomena Societal Impacts
Sustained Flood or Drought Water resources
Wildfires ‘ Energy consumption
Severe Weather Agriculture

Rain

Hail Disaster response

Tornadoes

Flash Floods Recreation

A GREATER sensitivity to climate and its variability as population has
increased, particularly here in the western U.S. and Mexico



Dynamical Downscaling Types with a
Limited Area Model

TYPE 1: Numerical Weather Prediction - short-term global forecast
TYPE 2: Seasonal Weather Simulation - Atmospheric Reanalysis
TYPE 3: Seasonal Weather Prediction - Global Model forced by SST

TYPE 4: Multiyear Climate Prediction - Coupled atmosphere-ocean global model



Major North American Summer
Climate Modeling Challenges
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Achieving a reasonable representation of North American summer
climate requires all of these elements in a RCM.



RCM Diagnostic Studies

Emphasis is to produce mesoscale features of the summer climate missing in
the reanalysis. Typically focus on one season or a few in sequence for a
given configuration of the RCM.

ETA: Berbery et al. (2001)

RAMS: Saleeby and Cotton (2004)

NCEP RSM: Anderson et al. (2000, 2002, 2004), Mo and Berbery (2004)
MMS5: Li et al. (2004), Xu et al. (2004)

RCMs have improved representation of:

Diurnal cycle of convection

Baja LLJ and associated gulf surges

Continental out-of-phase relationship in rainfall between core monsoon
region and central U.S.

Precipitation, though typically more closely matches satellite observations

Timing of monsoon rains coincident with changes in the large-scale
circulation (in a 22-year climatology)

In this study aim is to create a long-term RCM climatology, which has
not been yet attempted, to investigate interannual variability.



RCM Sensitivity Studies

Change the surface boundary (snow cover, soil moisture, vegetation, or sea
surface temperature) or the configuration of the RCM (model physical
parameterizations, grid spacing, domain size, or nudging options)

RAMS: Castro et al. (2005), Miguez-Macho et al. (2005)
MMS5: Liang et al. (2004), Gochis et al. (2002; 2003)
NCEP RSM: Kanamitsu and Mo (2003)

These studies have revealed:

LARGE sensitivities to the configuration of the RCM, particularly to the choice
of convection scheme and nudging options. Can drastically affect the
continental-scale distribution of rainfall.

Can be sensitivities to the surface boundary specification. Many studies have
focused, for example, on the effect of soil moisture in the central U.S.

A necessary first step before attempting an RCM climatology is to
quantify the sensitivity of the model to determine an appropriate
experimental design.



Relationship of North American
Summer Climate to Pacific SSTs

Castro et al. (2001, J. Climate): Using 50 years of NCEP Reanalysis data,
showed statistically significant relationships between tropical and North
Pacific SST and the evolution of the monsoon ridge over North America.

The teleconnection to Pacific SSTs evolves in time and is most apparent in
early summer. This affects the onset of the North American monsoon and
the end to the late spring wet period in the central U.S.

The SSTs reflect the El Nino Southern Oscillation (ENSO) and the
Pacific Decadal Oscillation (PDO). These are the modes which will be
used to guide investigation of the interannual variability of the RCM
climatology.

Numerous other observational studies generally support an ENSO-PDO
connection to North American summer climate and additionally note
that ENSO is related to a shift in the climatological position of the ITCZ
which affects precipitation in Mexico.



Mechanism of Rossby Wave Response
(Sardeshmukh and Hoskins 1988)

Day 200 (19 Jul)

Day 140 (20 Mcly)

Rossby wave source in barotropic
vorticity equation:
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Monsoon Ridge Position at Onset
(Late June, July)
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Modeling the Boreal Summer
Teleconnection Response

|dealized modeling studies using baroclinic or barotropic models with
prescribed tropical atmospheric heating suggest that the distribution of tropical
Pacific SST can produce a boreal summer atmospheric teleconnection
response, as in winter. The teleconnection response is most apparent in
late spring to early summer and is most likely related to forcing in the
central and western tropical Pacific.

References: Trenberth and Branstator (1992), Lau and Peng (1992), Newman
and Sardeshmukh (1998)

Atmospheric GCMs have also been employed to investigate boreal summer
climate and its relationship to sea surface temperature.

This study will use the GCM data from Schubert et al. (2002, J. Climate)



Observed SST Variability and
Atmospheric Circulation

EOF 1 rotated (227%): SST JIA Regress 2200 NCEP vs PC1 SST: JJA 80-99
ENSO
Mode
EOF 2 rotated (19%): SST JJA
PDO-like
Mode
3 1206 180 ] 120W BOW - LS 1200 - 160 120 w-:

Fiz. 10, Same az Fig, 9, except for the 200-mb height field from

Fiz. é. The first two {(of five) rotated ECFa of the JJ4 33T for the NCEP-NCAR reanalysis.

198099, Units are arbitrary.

Zonally symmetric response in the JJA average geopotential height field.
The PDO-like mode has more significant variability in the midlatitudes.



Response of NSIPP GCM to
Imposed SST Anomalies

z200 anomaly forced by eof1

Precip anomaly forced by eofl

ENSO
Mode

PDO-like
Mode

F1z. 12, The JJA enzemble mean 200-mb height response of the i
AGCM to specified 33T ancmalies consisting of (top) the first EOF ‘_"::_*3 __|2 _1] _é B O|25 0|5 L ‘!: :
and (bottom) the second EOF patterns shown in Fig, 6. The reaults o '
shown are the differences of the responsss to the two polarities of Fie. 13, Same a3 Fig. 12, except for precipitation. Units are mil-

sach 38T EOF divided by 2. Shading indicates significance at the  limeters per day.
3% leval bazed on a f test, Units are in metars,

Similar zonally symmetric response in geopotential height and

longitudinal and latitudinal shifts in the distribution of precipitation
in tropical Pacific and Indian oceans.



Part |
RAMS and Modification for Use as a
Regional Climate Model



Regional Atmospheric Modeling System
(RAMS) as a RCM

Parameterization Options:

Turbulent mixing: Mellor and Yamada (1974)

Land Surface: LEAF-2 Model (Walko et al. 2000)

Convective rainfall: Kain-Fritsch cumulus parameterization scheme (Kain 2004)
Non-convective rainfall: Dumpbucket scheme

Radiation: Chen and Cotton (1983)

Boundary Conditions:

Surface:
Standard topography, soil type, and vegetation datasets
NLDAS soil moisture from the VIC Model (Maurer et at. 2002)
Reynolds and Smith (1994) sea surface temperature

Lateral Boundaries:
NCEP Reanalysis (Kalnay et al. 1996)



RAMS Dynamical Downscaling
Sensitivity Experiments (Castro et al. 2005)

Investigated the value retained and added by dynamical downscaling
Issues addressed:

1. Underestimation of variability at large scales by the RCM.
As the grid spacing or domain size increases this worsens

2. Influence of surface boundary forcing.
Dominant factor in generating atmospheric variability at the small-scale.
Exerts greater control on the RCM solution as the influence of lateral boundary
conditions diminish.

3. Influence of model parameterizations



Implications for Generating a RCM
Climatology for North America

. Model domain size

A continental-scale, or smaller, domain is most appropriate so the
lateral boundary forcing can affect solution.

. Interior nudging

Weak nudging (at a one-day timescale), forces the RCM solution to
the reanalysis solution at the large-scale, while allowing the surface
forcing to act on the small scale.

. Cumulus parameterization

Kain-Fritsch scheme is most appropriate for the warm season
because it is more sensitive to the surface forcing and yields a better
representation of precipitation

. Single or multiple nesting?
A single grid approach is most desirable for RCM simulation.



Part Il

A Summer RCM Climatology of the
Contiguous U.S. and Mexico



RCM Setup for Summer Climatology

rars o

Grid spacing: 35 km

j __@ il m R 160 x 120 grid points horizontal

30 grid points vertical

Simulation length:

15 May — 31 August

A Years downscaled:

1950-2002

Premonsoon: 15 May — 15 June
Onset: 15 June — 15 July
Peak: 15 July — 15 August



Evolution of

RAMS Average
500-mb Height
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CPC Observations: June
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NCEP
Reanalysis
Average
Precipitation
(mm)

NCEP Reanalysis: June
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NCEP Reanalysis: August
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Station Observations: June

Surface Temperature (K)

Station Observations: July

284 256 288 290 292 ZB4 298 298 300 X2 304 308

Stotion Observations: Peak — Onset

RAMS: June RAMS: July
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RAMS: August RAMS: Peak — Onset

b

A temperature maximum in the Colorado River Valley. Temperatures
decrease in the core monsoon region after monsoon onset, and
generally increase elsewhere.



Surface Moisture Flux (m s g kg)

RAMS: July

Great Plains and Baja low-level jets appear in RAMS simulations
and evolve in time. Baja LLJ, however, is weaker than observed.



Spectral Analysis of Integrated
Moisture Flux Convergence (MFC)

Procedure:

For a given thirty day period about the date, perform a Fourier analysis on
MFC and determine red noise spectrum. Do this for all the years and
average the spectra to compute a climatology.

Determine the spectral power in the following bands:
Diurnal: 1 day
Sub-synoptic: 1.5 — 3 days
Synoptic: 4 — 15 days

Multiply the spectral power in a given band by a weighting factor that
accounts for the area above the red noise spectrum. Ensures the most
physically relevant features are emphasized.

Analyze the integrated moisture flux convergence because it is a
proxy for convective activity.



BONq- -

aon]

40"‘5
HI-;
ml-é
w0 A 5 | AR
1 - D . e 0 B N
Weighted e I i . o D I R . .~ O
13‘1“11!!1“115"11“105!100\!05!90\!&mm?ﬂim 13“1“125‘12“““”“10“1”9”“mm?ﬂ?ﬂhm
Spectral S g <] [N [T [ -
01 2 3 4 85 6 7 8 9 102030 405 1 2 3 4 5 84 7 8 b 1020304050

Power of
MFC
Diurnal Band

Units : mm? day-

Diurnal MFC: Peck — Premonsoon
T T ) T ——. Y Y

5 &
I T e S B RS B B Kt S g e R R e ] N
1390 1300 1797 1200 115% 110N 1058 1GW WY W 45w OOW TEW TR B 1350 1300 1Z9% 2% 115F 1100 100W 100W STW G6OW ESW KW 7N W oW
< T [T [ - T I
01 2 3 4 5 8 7 8 9 1020304055 =10 =5 =4 =3 =2 -1=-0505 1 2 3 4 5 10

Diurnal cycle of convection is physically important everywhere.
Strongest where there are terrain gradients and land-sea contrast.
Reanalysis rainfall is impacted in areas where the diurnal cycle is
underestimated.



Sub—Synoptic MFC: June Sub—Synoptic MFC: July
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Reflects fast moving synoptic weather systems or MCSs propagating
around the periphery of the monsoon ridge which originate as diurnal
convection over the Rockies. Just as important as the diurnal cycle in
generating rainfall in the Midwest.



Synoptic MFC: June Synoptic MFC: July
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Mode reflects passage of tropical easterly waves around the southern
periphery of the monsoon ridge. These enhance the diurnally forced
convection and allow it to more readily organize into MCSs— may trigger gulf
surges in the Gulf of California.



PART Il
Diagnosing the Effect of Pacific
SST Associated Teleconnections
on North American Summer
Climate



Boreal Summer Global SST Modes (1950-2000)
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Composite Analysis Technique

Consider years above or below a half standard deviation of a particular
PC time series to generate a positive and negative composite.

2001 and 2002 are considered PC 3 negative and PC 2 positive because
of their SST pattern.

Determine the statistical significance by a two-tailed t-test which considers
the anomaly of a given composite against the rest of the years.
Significance shown at the 90% level and above.

Shown is the anomaly of the positive composite minus the negative
composite divided by two.
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Day 170 (19 Jun)
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ENSO Mode
Teleconnection

Peaks late June,
early July

PDO-like Mode
Teleconnection

Peaks July

g" | ‘
-. T e ____‘_,.-——-____.,(\

-%sm; - At time of
= M e - il “maximum
e W W e teleconnectivity”

the anomalies are
in quadrature

WeE 160 100 16OR  4oW 12w 10w s e



Pacific SST Variability Mode

Average of REOF 1 and REOF 3
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Given the different teleconnection relationships associated with each
mode, should expect that climate anomalies would occur over a wider
geographic area with a combined index of ENSO and PDO-like SST
REOF modes.

Perform a similar composite analysis on this mode.



30 Day Average Precipitation Anomalies (mm)
Pacific SST Variability Mode Composites: June
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30 Day Average Precipitation Anomalies (mm)
Pacific SST Variability Mode Composites: July
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30 Day Average Precipitation Anomalies (mm)
Pacific SST Variability Mode Composites: August
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30 Day Average Precipitation Anomalies (mm)
SST Regime Shift Mode Composites: June
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30 Day Average Precipitation Anomalies (mm)
SST Regime Shift Mode Composites: July
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30 Day Average Precipitation Anomalies (mm)
SST Regime Shift Mode Composites: August
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Surface T (K), MF (m s g kg') Anomalies
Time of Maximum Teleconnectivity (15 July)
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Change in Magnitude of Diurnal Band of MFC at
Time of Maximum Teleconnectivity

_ Diurnal Diurnal
Pacific SST Variability Mode SST Regime Shift Mode
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Continental divide is a physical barrier to low-level moisture transport
by Great Plains and Baja LLJ. Geographic separation point between
regions with opposite signals in interannual variability of diurnal
convection.



Change in Magnitude of Sub-Synoptic Band of
MFC at Time of Maximum Teleconnectivity

Sub-synoptic Sub-synoptic
Pacific SST Variability Mode SST Regime Shift Mode
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Change in Magnitude of Synoptic Band of
MFC at Time of Maximum Teleconnectivity

Synoptic Synoptic
Pacific SST Variability Mode SST Regime Shift Mode
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Westward propagating convection off the Mogollon Rim and Sierra Madre
Occidental associated with gulf surges is affected.



NSIPP GCM Downscaling

Can it be shown in a seasonal weather prediction mode (Type 3) that
Pacific SSTs cause the observed climate anomalies?

Using the same methodology as for the reanalysis, dynamically downscale the
NSIPP GCM summer simulations of Schubert et al. (2002).
SST perturbed conditions (40): 10 per sign of ENSO, PDO-like REOFs
SST climatology (40)

In these cases, the initial soil moisture is specified as the 50 year NLDAS
climatology, so there is no sensitivity to the initial land state.

The anomalies are computed as the difference between the SST-EOF forced
runs and the SST climatology runs. Approximately the same number of degrees
of freedom in determining the statistical significance.



NSIPP GCM
30 Day
Average N
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NSIPP GCM
30 Day
Average
500-mb Height
Anomalies (m)

PC 2
Composites

PDO-like Mode

The height anomalies in the contiguous U.S.
are due mainly to positive phase.



RAMS-NSIPP Precipitation Anomalies (mm)
at Time of Maximum Teleconnectivity
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RAMS Precipitation Anomalies (mm) at Time
of Maximum Teleconnectivity for Positive
PDO-like Mode Composites

Type 2: Simulation mode Type 3: Prediction Mode
RAMS-NCEP Reanalysis
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In the case where the NSIPP GCM most faithfully reproduced the large-
scale teleconnection response, the precipitation anomaly pattern
produced in seasonal weather simulation mode is nearly identical to

that of a seasonal weather prediction mode.



RAMS-NSIPP Surface Temperature Anomalies
(K) at Time of Maximum Teleconnectivity
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RAMS-NSIPP Sfc. MF Anomalies (m s1 g kg-1)
at Time of Maximum Teleconnectivity
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RAMS-NSIPP Change in Magnitude of Diurnal
MFC at Time of Maximum Teleconnectivity

Diurnal: REOF 1 Negative Diurnal: REOF 1 Positive
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Summary and Conclusions
RAMS Simulation Design and Goals

TYPE 2, Seasonal Weather Simulation Mode

NCEP Reanalysis used to downscale 53 summer seasons (1950-2002)
over North America

Construct a RCM summer climatology and use this to further explore
the statistical relationship of North American summer climate to global
SST modes.

TYPE 3, Seasonal Weather Prediction Mode

80 realizations of NSIPP GCM data downscaled for forcing
corresponding to SST climatology and ENSO, PDO-like SST modes.

Establish a causal link of North American summer climate variability to
remote sea surface temperature forcing.



Summary and Conclusions
RAMS RCM Summer Climatology

The RCM summer climatology for North America was reasonable, in
light of observations. Important features captured included:

Seasonal transitions in precipitation and temperature
Baja and Great Plains LLJ
Development of the monsoon ridge

Modes of variability in convection, particularly the diurnal cycle



Summary and Conclusions
Climate Variability

Time-evolving teleconnections associated with Pacific SST variability
accelerate or delay evolution of the North American Monsoon.

The strongest climate response occurs in late June and July.

At this time, Pacific SSTs are most significantly related to precipitation in
the central U.S. and core monsoon region.

The teleconnections affect the strength of the Great Plains and Baja LLJs
in opposite ways.

The changes in low-level moisture transport influence the magnitude of the
diurnal cycle of convection, as well as the lower frequency modes of
convection.

Regime shift in tropical SST associated with general increase in simulated
precipitation, except in western Mexico.



May 2005 Sea Surface Temperature Anomalies
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Climate Prediction Center
Summer 2005 Forecast




Day 155 (4 Jun)

30-day Average
500-mb Height
Anomaly
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Tucson airport avg daily dewpoint tracker for 2003 monsoon

{2005 monsoon started on July 18, average start date is July 3rd)
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Summer 2005 was the second latest monsoon onset
on record!



30-day
Standardized

Precipitation
Index (SPI)

Summer 2005

Based on 1950-2002
CPC U.S. precipitation
record
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Topics For Future Research

The impact of the land surface state. Not considered in this study. How
do snow cover, vegetation, and soil moisture interact with the climate forcing
by Pacific SSTs? Is there a positive feedback? Future work with RAMS
aims to investigate this issue.

Could the present set of simulations be used to drive finer resolution
simulations?

The GCM SST-forced simulations need to be repeated with a variety of
GCMs to confirm the robustness of the time-evolving teleconnection
response in boreal summer and impact of warmer tropical SSTs.

If the boreal summer teleconnection response is truly global in nature,
then it could be expected that similar relationships exist in other parts
of the world, like East Asia and Europe. Dynamical downscaling in the
same vein as the present study may also yield significant results.

Multi-year climate prediction (Type 4) requires an accurate representation
of ENSO and PDO-like modes in a coupled ocean-atmosphere GCM. Still
don’t know the physical mechanisms of the latter.
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