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The structure of our talk...

F. Dominguez: Introduction and overview
of statistical downscaling results

C. Castro: Overview of dynamical
downscaling and current projects.

‘5 % 'F Dominguez, H. Chang, B. Ciancarelli:
‘é Dynamical Downscaling results and initial

'“ analyses




Our goal is to downscale climate model data to an
appropriate resolution for hydrological applications.

1. We rely on 2. These projections
General Circulation are downscaled 3. Downscaled

Models (GCMs) to using either atmospheric fields
estimate future statistical or force the VIC
climate variables dynamical methods hydrologic model.

4. The outcomes will be used to generate water
management data for drought planning, scenarios,
modeling, agricultural, tribal activities, etc.




There are basically two approaches to downscale
coupled climate model projections :

Statistical Dynamical
Downscaling Downscaling



There are basically two approaches to downscale
coupled climate model projections :

H H These methods assume a relationship between large-
Stﬂ*lSTlCGI scale atmospheric variables (predictors) and local

Downscqling climate variables (predictands).

* Pro : Cheap and e Con : Requires long and

computationally efficient. reliable observation data.

e Pro : Can use many different e Con : Depends on choice of

scenarios, model runs. predictors.

e Pro : Easily transferable to e Con : Assumes stationarity of

other regions. predictor-predictand
relationship.

e Con : Cannot account for
feedbacks.

Statistical Downscaling



Perturbation methods are probably the simplest
you can use.
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LLNL-Reclamation-SCU downscaled climate projections derived from the
WCRP's CMIP3 multimodel dataset, stored and served at the LLNL Green
Data Oasis is done using this technique (bias corrected).

Statistical Downscaling



Statistically Downscaled WCRP CMIP3 Climate Projections q

p://gdo-dep.uclinl.org/downscaled_cmip3_projections/ Google

Statistically Downscaled

|2

Santa Clara . . .
University WCRP CMIP3 Climate Projections
RECLAMATION
This site has been optimized for Infernet Explorer (IE) 6.%, IE 7.*, and Firefox 2.*
Requires JavaSeript to be enabled.
Welcome

Figure 1a-b: Median projected change in average-annual
Oct 31, 2008: Due to an unusually heavy demand in custom data requests over the last few days, requests may take several days to process. We are looking into precipitation (above, cm/year) and temperature (below, °C),
adding an email notification feature to inform users of potential wait times. 2041-70 versus 1971-2000

(updated January 8, 2008)

Summary

This archive contains fine-resolution translations of 112 contemporary climate projections over the contiguous United States. The original projections are from the
(WCRP's) (CMIP3) multi-model dataset, which was referenced in the Intergovernmental Panel on Climate Change Fourth Assessment
Report. The "About" section on this website contains development information on these downscaled projection datasets (i.e. background, data attributes, and methodology).

Purpose

The archive was developed to provide planning analysts access to climate projections "downscaled" to a finer spatial resolution. Such access permits development of decision-support information and
associated regional and local adaptive strategies under potential climate change. Several types of analyses are supported by this archive, including:

« regionally distributed assessments of projection frequency (Figure 1).
« location-specific assessments of projection frequency (Figure 2).

« climate change impacts assessments for social and natural systems.
« risk-based exploration of planning and policy responses.

Terms of Use

These data are being distributed to interested users for consideration in research and planning applications. Such applications may include any project carried out by an individual or organized by a
university, a scientific institute, public agency, or private sector entity for research or planning purpases. Any decision to use these data is at the interested user's discretion and subject to the
Disclaimer provided below.

Disclaimer

These data are being made available to provide immediate access for the convenience of interested persons. While the (LLNL), , and

(SCU) believe the information to be reliable, human or mechanical error remain a possibility. Therefore, neither LLNL, Reclamation, nor SCLJ guarantee the accuracy, completeness,
timeliness, or correct sequencing of the information. Also, neither LLNL, Reclamation, SCU, nor any of the sources of the information shall be responsible for any errors or omissions, or for the use or
results obtained from the use of this information.

Acknowledgements and Citation of these Data

Whenever you publish research based on data from this archive, please include the following acknowledgement of the superceding CMIP3 effort: "We acknowledge the modeling groups, the Program
for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset.
Support of this dataset is provided by the Office of Science, U.S. Department of Energy."

In first making reference to the data from this archive, please first reference the CMIP3 dataset by including the phrase "the World Climate Research Programme's (WCRP's) Coupled Model Figure 2: Projected changes in average-annual precipitaion
Intercomparison Project phase 3 (CMIP3) multi-model datasef’. Subsequent references within the same publication might refer to the CMIP3 data with terms such as "CMIP3 datg", "the CMIP3 (%) and temperature (°C) at a single location in Washington
multi-model dataset', "the CMIP3 archive', or the "CMIF3 dataset'. Subsequently, please reference this archive by including the phrase "LLNL-Reclamation-SCU downscaled climate projections state (i.e. 47.3125N, -121.1875E) for all archive projections,
derived from the WCRP's CMIP3 multimodel dataset, stored and served at the LLNL Green Data Oasis." and evaluated at two future periods

Statistical Downscaling




El Nifio 2002 (AMJ)

Historical Projected

UofA developed a
statistical method that
accounts for climate
oscillations.
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Spatial Precip Mean

— UA Downscaled future
—— MD past (Obs)
— Rec Downscaled future

When compared to the |
Reclamation method, it
yielded similar results, both
forcing and VIC output

0 20 40 60 80 100
Grid ID sorted by elevation

Rajagopal et al. 2009

We decided use the Reclamation data, because
of the availability of different models/scenarios.



It Is Important to clarify that the Reclamation Data
IS Bias Corrected, so the observed climatological
mean Is matched in the historical data.
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We ranked the IPCC-AR4 models based on their
similarity with historical data and convergence
In the future - for the Southwest Region.

Monthly Precipitation (mm/day)
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The ukmo-hadcm3, mpi-echam5
and ncar-ccsm3 ranked highest
among all models (Gleckler et al.
2008 found ukmo and mpi among
the best as well).

Precipitation (mm/day)

Climatology Salt-Verde Basin
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In summary, we use the
“Reclamation” statistical
downscaling to force VIC.
This data Is bias corrected.
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We use data from three
selected GCMs: the

ukmo hadcm3, ncar_ccsm3
and mpi_echam5 and three
emission scenarios.
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The three selected models all show increase In
temperature and different trends in precip.
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Rajagopal et al. 2010



All model runs show a decrease in cool
season streamflow.
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Slow flow (called Baseflow in VIC) decreases,
while ET depends on precipitation changes.
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In summary, both the Salt and Verde show a
future decrease In streamflow.

Salt River Basin Verde River Basin

Change in Streamflow Volume Change in Streamflow Volume
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The second downscaling approach is dynamical
downscaling.

Dynamical Downscaling

* Pro : Produces responses « Con : Requires significant
based on physically consistent  computational power.
processes.

e Con : Limited amounts of
* Pro : Captures feedbacks. models / runs / timescales.
« Pro : Can model changes that e Con : Dependant on GCM
have never been observed in boundary forcing.

historical record.

e Con : Problems with drifting

* Pro : Useful where of large-scale climate.
topographic controls are

Important.

Dynamical Downscaling
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Dynamical Downscaling

Definition: Use some kind of numerical model to generate finer-
resolution information from courser resolution information. For
the atmosphere, this is a limited area model.

Implicit assumption: A finer resolution and/or improved model
physics (parameterizations) gives a “better” representation of
weather and climate than the driving coarser resolution model
(i.e. GCM).

“Better” may = more fidelity with observations and/or improved
representation of physical processes

If this is not satisfied, you’'re wasting money in terms of

computer time to generate simulations and labor to analyze the
results!!

Dynamical Downscaling



Use the regional model as a “magnifying
lens” to create higher resolution data...

GCM data

Regional Climate Model
(WRF)

Physically based
- Regional Scale

Historical (Reanalysis) Seasonal Forecast (CFS) @Future Projections (IPCC)

—

Dynamical Downscaling



Turbulent
Precipitation diffusion Land surface
processes energy balance

Dynamic core

Radiation Conservation Boundary layer
Equations:
Mass, motion,
energy, water

Green: Parameterized
processes, cannot be
resolved on the grid.

Boundary

conditions

Dynamical Downscaling




Regional Model Grid (35km grid spacing)
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GCM not only provides lateral boundary conditions. Itis
also used to force the interior of the model...

This helps maintain the appropriate variability in
model fields at upper levels and at large scales.

Dynamical Downscaling
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Dynamical Downscaling



We are performing different types of
Dynamical Downscaling at the UofA using
WRF:

SISO NGEERENADY | 1979-2000 Done this spring
Seasonal Forecast (CFS) 1982-2000 Done Aug. 09

1968-2081 One model done
as of this April

Three IPCC AR4 models

for A2 emission scenario

Dynamical Downscaling



SRR Ze o | 1968-2079

Using HadCM3

Science Question: How will climate in the Southwestern United Stgtes
change due to global warming?

cof % |
5 50F iz constant =
Methodology: We use WRF with 5,0 — ey E d
spectral nudging to downscale 113 § .
(1968-2081) years of SRES A2 data g, -
from three “well performing” IPCC Emg
models. 8
G oFf
—1.05
1960

Dynamical Downscaling



We chose to downscale the three well performing IPCC
AR4 models that best represent the historical precipitation
and temperature climatology in the Southwest and upper
atmosphere circulation patterns in the Northern Hemisphere.
These also have different GCM precipitation projections
for Arizona (i.e. include “wet” and “dry” models)

Had CM3:
Completely done
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gfdl_cm2_0
gfdl_cm2_1
giss_aom
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CCSM: Will get
these data soon

gcm 3
gcm2

csiro_mk3_0

bcer_bcm2_0,
cccma_cgem3_1
cnrn_'l cm3
giss_model_e_h
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miroc3_2_hires
mpi_echam5
ncar ccs_m3 0
ukmo_hadcm3

gis:
iap_fgoals1_0_g

miroc3_2_medres
ncar_pcml,reg.nc
ukmo_had

mri_c

cccma_c

Dominguez et al (2009)



|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Timas J l a2 J l GRDFLX J l PRATEC
wwoex [ | swow || manoy
ZNU J l TH2 J l SNOWH J l SNOWNC
ZNW J l PSFC J l RHOSN J l GRAUPELNG
Z5 J l uio J l CANWAT J l EDT_OUT
D2s J [ Vio J [ 58T J l SWDOWN
u J l RDX J l ONDROPSOURCE J l GLW
W J l RDY J l MAPFAC M J l OLR
W J l RESM J l MAPFAC U J l XLAT
FH J l ZETATOP J l MAFFAC W J l XLONG
PHB J l GCF1 J l MAPFAC_ MX J l HLAT U
T J l CF2 J l MAPFAG_MY J l XLONG_U
mMu J [ CFa J [ MAPFAC UX J l KLAT W
MuB J [ ITIMESTEP J [ MAPFAC LY J l HLONG W
NEST_POS J l XTIME J l MAPFAC VX J l ALBEDO
P J l OVAPOR J l ME_ W INY J l ALBBCK
FB J l acLouD J l MAPFAC VY J l EMISS
s J( e J[ ¢ (™
oreve [ wwowas< [ ][ S\aw
SHNOPCX J l TSLB J l SINALPHA J l usT
S0ILTB J [ SMOIS J [ COSALPHA J l PBLH
FNM J l SH20 J l HGT J l HFX
FNP J l SEAICE J l HGT_SHAD J l QFx
roww [ ween [t J[ A
ron  J[_ smor [ eror || swowc
DNW J l UDROFF J l MAX_MSTFX J
DN J l IVGTYP J l MAX MSTFY J
CFN J [ ISLTYP J [ RAING J
ot J[__veorna | [ rannc |

Dynamical Downscaling

While statistically
downscaled data will
generally give us two
variables (P and T),
dynamical
downscaling gives us
approx. 90. At a 6hry
resolution.

Winds (different levels),
temperature, humidity, ET,
potET, SWE, snow depth, soil
moisture ...



RCM variables being provided to the hydrologic modeling team

2m Surface air temperature Higher confidence
Variables more dependent

i on dynamic core
10 m Surface winds 4

Snow water equwalent Lower confidence

Variables more dependent
Snow depth on model parameterizations

Dynamical Downscaling



Required resources for UA
dynamical downscaling activities

Salaries
Faculty (Castro, Dominguez), a postdoctoral researcher, graduate

students, technical support
$100-200 K per year when fringe benefits included.

Computing equipment

Multiprocessor linux clusters, RAID storage systems (10s of terrabytes),
local desktops, data interface?

$100-200 K for linux clusters (already covered through faculty startups,
federal grants), $10-30 K for RAID systems, $5 K for workstations

Travel and publications

$5-10 K per year

Dynamical Downscaling



Dynamical
Downscaling

IPCC data




The process of downscaling the UKMO-HadCM3
data involved several steps:

Feb 09
|
Select the Obtain data at Process the Modify the RCM | | “Nurse” the
models to all 6-hrly data to input for these types model run.
downscale temporal into the regional of simulations.
consulting resolution and climate model
with all the variables.
stakeholders Using 128

processors

Dynamical Downscaling



Observation UKMO-
s CPC HadCM3

Preliminary analysis of
results...

June

1968-2000 June July and
August precipitation
climatology of WRF
downscaled UKMO-HadCM3
data show a much more
realistic spatial
representation of the North
American Monsoon than the
raw model.

July

August

O
. | e
0

200 mm/mo

Dynamical Downscaling



Preliminary analysis of wredion 1 (core) Climatology
results... 1) oo
1401

EQO
1968-2000 monthly :”
climatology shows that WRF =
represents the timing and 20 |ﬂ HI‘ ‘ \““l
. . 5 I ﬂl T
|ntenS|ty Of the Monsoon Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
more realistically than the _Region 2 (AZ) Climatology
raw model. S

Precipitation {mm/mnt)
= o o
(=] (=) =

]
(=]

™ MWM :

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dynamical Downscaling



Preliminary results of future precipitation show that the 2001-
2040 climatology has a generalized higher precipitation —

Particularly in July, as compared to the 1968-2000 monthly
climatology.

Region 2 (Arizona)
120 ———
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Il 2001-2040

100

Precipitation (mm)
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Dynamical Downscaling



We believe the reason for these changes in precipitation can
be summarized as follows (Salt-Verde Basin).

UKMO Hadcm3 raw GCM precapltatlon chmato!cgy
-1950 2000

2001 -2040 ||
~ Inthe winter, dominated by large scale
~ circulation, the raw GCM (UKMO)
“ i ' shows an increase in precipitation.
A

J FM M J J

m)

Precipitation {rn

WRF Downscaled UKMO Hadcms Prempnauon Climatology
120,

I 1968-2000)

100! Bl 2001-2040|
2 o In addition to the winter increase, the
§ RCM more realistically captures the
g% summer rains (wet bias). The increase
g w0 in global atmospheric moisture might

20- u u be driving an increase in summer rain.

o HHNI ! L This must be investigated.



To contrast with statistical downscaling

UKMO Hadcm3 raw GCM precipnatlon cllmaltoiﬂgyr Stat:stlcally Downscaied UKMO Hadcm3 Preclpnauon Climatology
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100 The statistical downscaling inherits the

80 change in precipitation from the GCM
60 and assigns a historical climatology.
Consequently, it doesn’t show any
u difference in the summer.
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When comparing Dynamical Downscaling Results with (Bias
Corrected) Statistical Downscaling, we see a wet bias Iin
summer precipitation, and considerable variability in winter
precipitation.

Multimodel Ensemble Precipitation Summer Multimodel Ensemble Precipitation Winter
5 T T T T T T T 5 T T T T

45+
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3

25

2

15
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05

0 0 _
1950 1970 1990 2010 2030 2050 2070 2080 1950 1970 1990 2010 2030 2050 2070 2090

The hydrologic modeling team will speak about how they are
dealing with the bias.



We have talked about the climatological
analysis, now let’s look at the
Interannual variability...



Connections between seasonal precipitation variability and large scale

teleconnections

Equatorial Pacific sea surface temperature
anomalies (ENSO + PDO)

[Sea Surface Temperature]

Regression maps of SST, 500mb h
ﬁ Geopotential Height based on
dominant precipitation pattern )
Change in large-scale
atmospheric circulation Impact of large-scale teleconnection
patterns over Northern Hemisphere on regional precipitation pattern

N

I

Precipitation interannual variability
(statistical analysis (SPI, EOF))

Coherent seasonal response in
Southwest US precipitation




Statistical analysis methods:

Precipitation normalization

— Standard Precipitation Index(SPI): Accounts for
non-normal distribution of precipitation

Spatial pattern recognition

— Rotated Empirical Orthogonal Function
Analysis(REOF)

Relationship of dominant modes of precipitation
variability to large-scale forcing factors

— Regression Analysis between precipitation
modes and SST, geopotential height



What we look for to assess natural variability in downscaled
climate data

GCM: need to capture the and associated
pattern

e RCM: need to capture the regional
variability

e Expectations for dynamically downscaled output:

e Capture Pacific forced interannual variability,
which must be seen in the dominant regional
precipitation patterns, associated sea surface
temperatures and large scale circulation



Dominant pattern of variability for winter
season



FMA EL NINO PRECIPITATION ANOMALIES (MM DAY-")
(10 CASES)

1.5
I

10.25
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1.5

Typical winter precipitation
anomaly during El Nino year

Source: Climate Prediction Center
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El Nino

La Nina

Moisture,~~
Transport

\

El Nifo
High NPO Phase

Moisture””
Transport

La Nina
Low NPO Phase

Fiz. 14, Idealized relationship of monsoon ridge posgition and midlevel moisture transport to
Pacific 33Tz at mongoon onzet,

Early summer
teleconnection
patterns
(late June, early July)

(Castro et al., 2001)
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RCM with dynamically downscaled GCM data is able to
capture:

— Seasonal precipitation variability (winter and
summer)

— Large-scale forcing corresponds to the
dominant precipitation pattern
« ENSO pattern
o Stationary patterns in the atmospheric circulation

both In winter and summer

— Quasi-geostationary Rossby wave (different driving
mechanisms for winter and summer)

The regional model is adding substantial value to the
representation of the interannual variability of the driving
global model.



Conclusions

1. The Reclamation 2. All three selected
statistically models show a decrease
downscaled data has in streamflow and
been used as slowflow and variable
atmospheric forcing for precipitation and ET in
the VIC model the Salt/Verde.
3. Dynamical 4. Climatological
Downscaling of analyses show clear
HADCM3 data has been improvements when
finalized. compared to raw GCM
data.

Conclusions



Conclusions

5. In the dynamically downscaled
WRF HADCM3 interannual
variability is well captured for
both summer and winter
seasons.

Dynamical Downscaling



Lessons Learned:

1. Obtaining the forcing data is NOT trivial, in this case we are fortunate
that the NARCCAP effort is underway.

2. Probably most of the personnel time was spent modifying the data to be
iInput into WRF. However, “nursing” the model also involves personnel
time.

3. Pre-processing must be done in advance of model runs.
4. Forcing data is not perfect, some days have garbage.

5. We are still dealing with the issues of data sharing. These involve
SIGNIFICANT volumes of data transfer.

6. We anticipate storage needs on the order of 100 TB for future
simulations.

Dynamical Downscaling
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