Comparison of Land-Precipitation Coupling Strength Using Observations and Models

Xubin Zeng, Chris Castro (U. Arizona)
Mike Barlage (NCAR)
Kelly Wink (U.S. Army Aberdeen Test Center)

1. Overview of previous work
 (a) early 20th Century; (b) isotopic tracer;
 (c) precipitation recycling; (d) water vapor tracer;
 (e) soil water memory; (f) model sensitivity;
 (g) composite assessment

2. Our results
 (h) initial attempt; (i) new attempt

3. Conclusions
(a) Early 20th Century:

\[P = E + C + \frac{d(PW)}{dt}; \quad \text{indicator: } \gamma = \frac{E}{P} \approx 70\% \]

Weakness: \(r(E, C); \) incorrect

(b) Isotopic tracer:
Isotope of water depends on temperature and history of water; and
Condensation depletes heavy-isotope contents in \(P \) as the air moves from ocean to inland. Therefore, a small isotope gradient might indicate large contribution from land

Weakness: Quantitative linkage to coupling strength has large uncertainties
(c) Precipitation recycling:
\[P = P_m + P_a \quad \gamma = \frac{P_m}{P} \]

Weakness: Assuming well-mixed air (i.e., \(P_m/P = P_{Wm}/P_W \))
Dynamic meaning is lacking
Strength: Relatively easy to compute

Dominguez et al. (2006)
(d) Water vapor tracer
\[P = \sum P_i \quad \gamma = \frac{P_L}{P} \]

Weakness: model-dependent
Strength: source regions

This method and precipitation recycling computations give different recycling ratios

Bosilovich and Schubert (2002)
(e) Soil moisture memory
Strength: clear interpretation
Weakness: interpretation of land-P coupling is lacking

Wang et al. (2006): Extending the theoretical analysis of 1-layer bucket model to 3 layers
(f) Model sensitivity: Hot Spots

Weakness: model-dependent; expensive computationally

Strength: interpretation is straightforward

Koster et al. (2006): GLACE; Also Wang et al. (2007)’s $\Delta \Phi$ index
(g) Composite assessment based on θ persistence, θ control of E, and P recycling (Dirmeyer et al. 2009)

Weakness: Some of the hot spots are difficult to understand (e.g.,
- DJF over central U.S.,
- JJA over Sahel,
- JJA over Australia)

Strength: Good consideration of the physical processes
(h) Our initial attempt (Wink et al. 2003; unpublished):

\[P' = E' + (P - E)' \]
\[\gamma = \frac{r(P', E')}{r[P', (P-E)']} \]

Main criticism:

Difficult to interpret \(\gamma \) quantitatively (e.g., > 1.4 over a few regions)
(i) Our new effort

\[\Sigma \Delta P' \Delta P' = \Sigma \Delta P' \Delta E' + \Sigma \Delta P' \Delta C' \]; \quad C = F_{in} - F_{out} - dW/dt + \alpha

\[\Gamma = \Sigma \Delta P' \Delta E' / \Sigma \Delta P' \Delta P' \]

\[\gamma = \Gamma / (1 - \Gamma) \quad \sigma_C / \sigma_E \]

E’, P’ are monthly deviations from climatology

in general \(\gamma > \Gamma \)

Strength: derived rigorously; easy to interpret physically

easy to compute from data or model output

Weakness: just a necessary condition for land-P coupling; does not provide causality

Data: Monthly P and E data from various sources

Why not time-delayed covariance \(\Sigma P_i' E_{i-1}' \)

a) it does not provide causality either (Wei et al. 2008)

b) \(\Sigma P_i' E_{i-1}' / \Sigma P' P' \) does not have a clear meaning any more
P not assimilated; $\sigma_p < 0.2$ mm/day masked

ECMWF 45yr Reanalysis
P assimilated

Our results are insensitive to scales (32 km vs 2.5 deg);

P recycling computation is sensitive to scales

Γ is computed using 2.5 deg data

Γ values at 32 km are averaged to 2.5 deg
observed P;
offline model-derived ET

VIC 50yr Retrospective Average Data
Combination of ECMWF and NCEP reanalyses, NARR regional reanalysis, and VIC data

July
Γ provides a simple indicator to characterize a GCM’s coupling strength
CCSM3 50yr 2X CO2 - Control
Conclusions

1. Develop a new indicator to characterize the land-precipitation coupling:
 \[\Gamma = \frac{\Sigma P'E'}{\Sigma P'P'} \]
 Strength: derived rigorously; easy to interpret physically; easy to compute from data or model output; insensitive to horizontal scales
 Weakness: just a necessary condition for land-P coupling; does not provide causality

2. CCSM land-P coupling strength is too strong;
 RAMS is not as strong but it is still stronger than indicated by the data analysis

3. Doubling of CO2 change little the overall coupling strength of CCSM