### **Comparison of Land-Precipitation Coupling** Strength Using Observations and Models

Xubin Zeng, Chris Castro (U. Arizona) Mike Barlage (NCAR) Kelly Wink (U.S. Army Aberdeen Test Center)

#### 1. Overview of previous work

(a) early 20<sup>th</sup> Century; (c) precipitation recycling; (d) water vapor tracer; (e) soil water memory; (g) composite assessment

(b) isotopic tracer; (f) model sensitivity;

#### 2. Our results

(h) initial attempt;

3. Conclusions

(i) new attempt





#### (a) Early 20<sup>th</sup> Century:

P = E + C + d(PW)/dt; indicator:  $\gamma = E/P (\sim 70\%)$ 

Weakness: r (E, C); incorrect

(b) Isotopic tracer:
Isotope of water depends on temperature and history of water; and
Condensation depletes heavy—isotope contents in P as the air moves from ocean to inland. Therefore, a small isotope gradient might indicate large contribution from land

Weakness: Quantitative linkage to coupling strength has large uncertainties





#### (c) Precipitation recycling: $P = P_m + P_a$ $\gamma = P_m / P$

Weakness: Assuming well-mixed air (i.e., Pm/P = PWm/PW) Dynamic meaning is lacking Strength: Relatively easy to compute



FIG. 2. Schematic representation of water vapor fluxes in an atmospheric grid box i, of area  $\Delta A$  within region B. The precipitation P and precipitable water w can be divided into their recycled (m) and advective (a) components.

#### Dominguez Et al. (2006)



(d) Water vapor tracer  $P = \Sigma P_i$   $\gamma = P_L/P$ 

Weakness: model-dependent Strength: source regions

This method and precipitation recycling computations give different recycling ratios



FIG. 13. Percentage of precipitation recycling for each simulated month for the WVTs (solid), <u>Eltahir and</u> <u>Stas (1994.;</u> long dash), and <u>Brubaker et al. (1993.;</u> short dash) in the (a) MW and (b) SE regions.







Bosilovich and Schubert (2002)



# (e) Soil moisture memoryStrength: clear interpretationWeakness: interpretation of land-P coupling is lacking



Period (months)

Wang et al. (2006): Extending the theoretical analysis of 1-layer bucket model to 3 layers

A

#### (f) Model sensitivity: Hot Spots

Weakness: model-dependent; expensive computationally Strength: interpretation is straightforward

Koster et al. (2006): GLACE; Also Wang et al. (2007)'s  $\Delta \Phi$  index



(g) Composite assessment based on  $\theta$ persistence,  $\theta$  control of E, and P recycling (Dirmeyer et al. 2009)

Weakness: Some of the hot spots are difficult to understand (e.g., DJF over central U.S., JJA over Sahel, JJA over Australia) Strength: Good consideration of the physical processes



#### (h) Our initial attempt (Wink et al. 2003; unpublished): P' = E' + (P - E)' $\gamma = r(P', E')/r[P', (P-E)']$

Main criticism:

Difficult to interpret γ quantitatively (e.g., > 1.4 over a few regions)



#### (i) Our new effort $\Sigma P'P' = \Sigma P'E' + \Sigma P'C'; \quad C = Fin - Fout - dW/dt + \alpha$

 $\Gamma = \Sigma P' E' / \Sigma P' P'$ 

 $\gamma = \Gamma / (1 - \Gamma) \sigma_C / \sigma_E$ 

E', P' are monthly deviations from climatology in general  $\gamma > \Gamma$ 

Strength: derived rigorously; easy to interpret physically easy to compute from data or model output Weakness: just a necessary condition for land-P coupling; does not provide causality

Data: Monthly P and E data from various sources

Why not time-delayed covariance ΣPi'Ei-1'
a) it does not provide causality either (Wei et al. 2008)
b) ΣPi'Ei-1'/ΣP'P' does not have a clear meaning any more

#### P not assimilated; $\sigma_p < 0.2 \text{ mm/day masked}$ ECMWF 45yr Reanalysis





#### P assimilated

Our results are insensitive to scales (32 km vs 2.5 deg);

P recycling computation is sensitive to scales



Γ is computed using2.5 deg data

 $\Gamma$  values at 32 km are averaged to 2.5 deg



#### observed P; offline model-derived ET

VIC 50yr Retrospective Average Data





# Combination of ECMWF and NCEP reanalyses, NARR regional reanalysis, and VIC data





## Γ provides a simple indicator to characterize a GCM's coupling strength

#### CCSM3 50yr Control Run





#### CCSM3 50yr 2X CO2 - Control









### Conclusions

1. Develop a new indicator to characterize the land-precipitation coupling:  $\Gamma = \Sigma P'E'/\Sigma P'P'$ 

Strength: derived rigorously; easy to interpret physically; easy to compute from data or model output; insensitive to horizontal scalesWeakness: just a necessary condition for land-P coupling; does not provide causality

 CCSM land-P coupling strength is too strong; RAMS is not as strong but it is still stronger than indicated by the data analysis

3. Doubling of CO<sub>2</sub> change little the overall coupling strength of CCSM

