North American Monsoon Variability from Instrumental and Tree-Ring Data: A Progress Report

Connie A. Woodhouse, David M. Meko, Ramzi Touchan, Steve W. Leavitt, and Daniel Griffin
Laboratory of Tree-Ring Research, University of Arizona

Christopher L. Castro, Brittany Ciancarelli
Department of Atmospheric Science, University of Arizona

Photos: Dan Griffin
Research Goal: to investigate the long-term variability of the US North American Monsoon, both spatially and temporally, using instrumental data and paleoclimatic data from tree-ring widths and stable-carbon isotopes

Objectives:

- Develop a US network of tree-ring partial width tree-ring chronologies
- Use latewood width and δ13C data from tree rings to reconstruct NAM variability
- Investigate NAM characteristics, relationship to winter precipitation, ENSO, and other climate features
- Compare downscaled general circulation model (GCM) simulations with NAM reconstructions to assess variability
- Partner with water resource managers to develop applications of NAM reconstructions for resource management and decision making
Research Goal: to investigate the long-term variability of the US North American Monsoon, both spatially and temporally, using instrumental data and paleoclimatic data from tree-ring widths and stable-carbon isotopes

Objectives:

- Develop **a US network of tree-ring partial width tree-ring chronologies**
- Use **latewood width** and **δ13C data** from tree rings to reconstruct NAM variability
- Investigate NAM characteristics, relationship to winter precipitation, ENSO, and other climate features
- Compare downscaled general circulation model (GCM) simulations with NAM reconstructions to assess variability
- Partner with water resource managers to develop **applications** of NAM reconstructions for resource management and decision making
Basis for monsoon reconstructions

- typical approach: measure width of entire annual ring
- annual rings can be divided into earlywood and latewood
- Meko and Baisan (2003) demonstrated latewood formation corresponds to summer precipitation
The tree-ring chronology network

Strategy:
- Geographic focus: “core” and “fringe” areas
- Species: ponderosa pine and Douglas-fir
- Rely on existing collections; update and target younger trees

To date:
- 41 sites have been sampled for ring widths and 3 for carbon isotopes
- 16 sites have been processed (dated and measured)
- 4 preliminary sets of chronologies have been generated
The tree-ring chronology network

Strategy:

• Geographic focus: “core” and “fringe” areas
• Species: ponderosa pine and Douglas-fir
• Rely on existing collections; update and target younger trees

To date:

• 41 sites have been sampled for ring widths and 3 for carbon isotopes
• 16 sites have been processed (dated and measured)
• 4 preliminary sets of chronologies have been generated
Field and laboratory methods

- Increment borers to collecting cores; ~20 trees per site, 2 cores per tree
- Cores are crossdated to exact calendar years
- Full ring, earlywood and latewood components are measured
- Chronology compilation: see Dan Griffin’s poster
- Sampling for isotopic analysis at three of the sites (two species at one site)
- Carbon isotope analysis
Climate information from earlywood and latewood:

- Tree-Ring data: Regional averages for earlywood and latewood chronologies for the 4 sites
- Climate data: monthly precipitation for a region west of Tucson (PRISM), 1895-2008
- Earlywood widths correlate with November-April precipitation
- Latewood widths correlate with July and August precipitation
Observed precipitation and regional latewood and earlywood chronology averages
Extracting the monsoon signal: carbon isotopes

Stable-carbon isotope composition of rings should be related to moisture because under dry conditions leaf stomata close down and more 13C gets fixed by tree.

First Isotope Site in Santa Catalina Mts. (Bear Canyon)

- Latewood of each ring separated from two cores of four trees
- Latewood pooled from all trees, except ca. every 20th year when trees were analyzed separately
- Alpha-cellulose component isolated for isotope analysis
Tree-ring d\(^{13}\)C and Total Jul-Sept precipitation (Bear Canyon PRISM grid point)

Bear Canyon Doug-fir vs. PRISM Precipitation 1941-2008 (-110.685, 32.377)

![Graph showing correlation between δ\(^{13}\)C and ΣJAS Precipitation](image)

- **r = 0.48**
- **p < 0.00005**

Bear Canyon Doug-fir vs. PRISM Precipitation 1941-2008 (-110.685, 32.377)

![Graph showing correlation between δ\(^{13}\)Ccorr and ΣJAS Precipitation](image)

- **r = 0.56**
- **p < 0.000001**

<table>
<thead>
<tr>
<th>Year</th>
<th>ΣJAS Precipitation (mm)</th>
<th>δ(^{13})C</th>
<th>δ(^{13})Ccorr (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>100</td>
<td>-23.5</td>
<td>-23.0</td>
</tr>
<tr>
<td>1950</td>
<td>150</td>
<td>-23.0</td>
<td>-22.5</td>
</tr>
<tr>
<td>1960</td>
<td>200</td>
<td>-22.5</td>
<td>-22.0</td>
</tr>
<tr>
<td>1970</td>
<td>250</td>
<td>-22.0</td>
<td>-21.5</td>
</tr>
<tr>
<td>1980</td>
<td>300</td>
<td>-21.5</td>
<td>-21.0</td>
</tr>
<tr>
<td>1990</td>
<td>350</td>
<td>-21.0</td>
<td>-20.5</td>
</tr>
<tr>
<td>2000</td>
<td>400</td>
<td>-20.5</td>
<td>-20.0</td>
</tr>
<tr>
<td>2010</td>
<td>450</td>
<td>-20.0</td>
<td>-19.5</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>-19.5</td>
<td>-19.0</td>
</tr>
</tbody>
</table>
Selecting a monsoon region and variable(s) for reconstruction

Instrumental data for spatial analysis and calibration:

- Standard Precipitation Index (SPI) calculated using PRISM precipitation data
- combinations of 2 and 3 month SPI, June-Sept

Defining the ‘core’ monsoon region: 2 approaches

- spatial analysis of SPI
- spatial analysis of latewood chronology

Chris Castro, Brittany Ciancarelli
Partnering with regional water managers: Tucson Water

Since monsoon onset closely coincides with decrease in water demand, Tucson Water is interested in the long-term variability of onset timing.

There will be some challenges…

What is the best date to consider the monsoon onset/decrease in TW demand?

Is it the first time demand decreases after it peaks?

Or when it decreases and stays low for a time?
Summary

Accomplished to date:

• Most of field work completed
• Chronology development strategy
• Climate data compilation and initial analysis

Next steps:

• Chronology network development
• Reconstructions for monsoon and winter precipitation
• Treatment of fringe area
• Work with resource managers to determine useful metrics to reconstruct