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Dynamical Downscaling Types

from Castro et al. (2005)

TYPE 1: remembers real-world conditions through the

initial and lateral boundary conditions

TYPE 2: initial conditions in the interior of the model

dre “forgotizn” outtne latzral golncdary conditions
fzad real-world data into tne ragional mocds]
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TYPE 4: Global model run with no prescribed
internal forcings. Couplings among the ocean-
land-continental ice-atmosphere are all predicted

Examples

Numerical
weather
prediction

Retrospective
sensitivity or process
studies using global
reanalyses

Seasonal
climate
forecasting

Climate
change
projection



Definition of RCM:

Initial conditions in the interior of the model
are “forgotten” but the lateral boundary
conditions feed data into the regional model

Type 2 dynamical downscaling and above



Some a priori expectations for RCM
dynamical downscaling
(Type 2 and above)

A RCM should:

1. Retain or enhance variability of larger-scale features provided
by the driving global model (i.e. those on the synoptic scale)

2. Add information on the smaller scale because of increase in
grid spacing, finer spatial scale data (e.g. terrain, landscape)
and possibly differences in model parameterized physics.

3. Add information that is actually of value, as demonstrated by
comparing RCM results with independent metrics (e.g.
observations for Type 2)



" Algust 14,19914

-
Ay

A good test
case for a
RCM...
The Great

Flood of 1993
in central U.S.

Our RCM experiments
focused on the month
of May...look at results
after two weeks of
integration.




Regional Climate Model
Experiments and Methods

Castro et al. (2005)

Regional Atmospheric Modeling
System (RAMS)

NCEP Reanalysis lateral
boundary forcing.

Basic model experiments that
investigated sensitivity to
domain size and grid spacing
with standard lateral boundary
nudging only.

Follow on experiments that
investigated sensitivity to 4DDA
internal nudging.

Rockel et al. (2008)

CLM (or CCLM), climate version
of German weather service
COSMO model.

ECMWF ERA-40 Reanalysis
lateral boundary forcing

Repeat basic model experiments
of Castro et al. (2005)

Follow on experiments with
spectral nudging.



Figure 1. RAMS domains for model ser




Degradation of large-scale circulation features
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Quantitative analysis of value
retained by RCM at large scales

Compute 2-D power spectrum for a given model variable as a
function of wavelength (Errico 1985). Do for both RCM and driving
reanalysis.

Appropriate variable for large-scale: kinetic energy

Average power spectra of last 15 days of simulation.

Compute the ratio of average of the power spectra of RCM vs.
driving reanalysis.

Desired: RCM retains or adds value at the largest scales where the

driving GCM or reanalysis has information.

Undesired: RCM loses variability at the largest scales provided by
the driving GCM or reanalysis.
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Quantitative analysis of value
added by RCM at small scales

Compute 2-D power spectrum for a given model variable as a function of
wavelength (Errico 1985). Do for RCM with and without interior nudging.
Appropriate variable for small-scale: moisture flux convergence

Average power spectra of last 15 days of simulation.
Compute the ratio of average of the power spectra of RCM with interior
nudging vs. RCM with no interior nudging.

RAMS: Interior nudging at all wavelengths
CLM: Spectral nudging for largest wavelengths only

Desired: Interior nudging does not reduce variability at the smaller scales
where the RCM is adding information.

Undesired: Interior nudging reduces variability at the smaller scales.



CLM Spectral nudging in brief
Applied at scales greater than 4Ax
of driving global reanalysis for horizontal winds

Form of nudging coefficients for a given model variable in spectral domain:

m ijAlL, Alkg/L
Uj,k(a?,k(t)_aj,k(t))eWL e

3, K,

j=—J, k=—K,

aa (t) Fourier expansion coefficients of variable in driving
|,k
J larger-scale model (a)

o m (t) Fourier expansion coefficients of variable in the
i :
J regional model (m)

77] k Nudging coefficient. Larger with increasing height.



Change in spectral power of KE and MFC
with internal nudging in RAMS
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Figure 9. Average fractional change in spectral power {AS(h)s,.) versus logy(k) and wavelength for

(2} column-averaged kinetic encrgy and (b) column wtegrated moisture flux convergence (MFCH,
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variability at small scales where we want the regional
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Figure 6. Precipitation resulis from CLM simulations for the second half of May 1993 without and with
spectral nudging in the top and bottom rows, respectively.
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Conclusions of our RCM studies

*The results for CLM reported in Rockel et al. (2008) are similar to
those found in the RAMS study by Castro et al. (2005) for basic
experiments using nudging only in a lateral boundary sponge
zone. In both models, there is a loss of large-scale variability with
increasing domain size and grid spacing.

sinternal nudging can alleviate loss of large-scale variability in
both RCMs.

» Spectral nudging yields less reduction in added variability of
the smaller scales than grid nudging and is therefore the
preferred approach in RCM dynamic downscaling.

*Results suggest the effect to be largest for physical quantities in
the lower troposphere (e.g. moisture flux convergence, rainfall)



General conclusions on utility of RCMs

*The utility of all regional models in downscaling primarily is not
to add increased skill to the large-scale in the upper atmosphere,
rather the value added is to resolve the smaller-scale features
which have a greater dependence on the surface boundary.

However, the realism of these smaller-scale features needs to
be quantified, since they will be altered to the extent that they
are influenced by inaccurate downscaling of the larger-scale
features through the lateral boundary conditions and interior
nudging or lack thereof.

o It should also be assessed if the dynamically downscaled
information provides more accuracy than a corresponding
statistical downscaling technique.



