
1. Surface Layer Scaling
Recall when we spoke about K-Theory when discussing First Order Closure:

We can define a mixing length, l by l2 = cz′2.
In the surface layer eddies are limited by the earth’s surface. It is assumed that

l2 = k2z2 where k is the von Karman constant, so:

KE = KH = Km = l2
∣∣∣∣∂U∂z

∣∣∣∣ = k2z2
∣∣∣∣∂U∂z

∣∣∣∣ (1)

In reality, the origin of z for a rough surface because the protrusion of rough-
ness elements above the substrate surface displaces the entire flow upwards. We
define the displaced height z = Z − d, where d is the zero-displacement height
and Z is the height above the substrate surface (height above the actual ground
surface).

Hence, for neutral conditions with no buoyancy, in the surface layer (assum-
ing that the stress remains constant throughout the surface layer) we recall the
friction velocity, choosing the x-axis appropriately, reduces to:

u2∗ = −u′w′ = Km
∂U

∂z
= k2z2

(
∂U

∂z

)2

(2)

u∗ = kz

(
∂U

∂z

)
(3)

Integration gives the famous log-wind profile for neutral conditions:

kU

u∗
= ln(z) + cnt (4)

We define the aerodynamic roughness length as z0 where U(z0) = 0. Then,

kU

u∗
= ln

(
z

z0

)
(5)
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2. Surface Roughness
The aerodynamic roughness length z0 is an important parameter, as is the related
quantity CD drag coefficient, because they are used to calculate wind profile, sur-
face stresses and fluxes. Wind profiles require: the zero-plane displacement and
the aerodynamic roughness length.

2a. Zero-Plane Displacement

The profile relations we derived involve the height z = Z−d measured relative to
a reference level termed the zero-plane displacement height d. In this relationship
d is chosen so that the wind measured at an actual height Z (U(Z)) satisfies:

kU(Z)

u∗
= ln

Z − d

z0
= ln

z

z0
(6)

The values of d for specific surfaces were determined from observations of
neutral wind profiles close to the surface. However, this can be applied to non-
neutral surfaces and d is assumed to be independent of stability. We also use the
concept of zero-plane displacement height for the profiles of θ and q. In many
cases the relationship:

d

hc
≈ 2/3 (7)

For hc = height of canopy, gives adequate measure of d, although there is no
physical reason for this ratio to be a constant - as d should also be related to the
density of the canopy. When Z > 10hc, then d can be ignored

Table 1: Garrat table A6

2b. Aerodynamic roughness length

The aerodynamic roughness length z0 is a surface length scale defined specifically
by the log wind law for neutral conditions. Within this definition, the extrapolated
wind speed equals zero at the height z = z0.
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For aerodynamically smooth flow - that is, when the viscous sublayer is deeper
than surface roughness protuberances, experiment shows that:

z0 ≈ 0.11ν/u∗ (8)

With typical values around 0.01 mm. However, for aerodynamically rough
flow, z0 is a complicated function of the surface geometry. Estimates are done
using neutral wind conditions.

• Without many roughness elements, z0 depends on underlying surface.

• At intermediate element density, drag will increase and so will z0

• At some point the air will cease to enter the inter-element spaces, and further
increases in density will decrease drag and z0

2c. Scalar Roughness Lengths

We defined the surface-layer temperature and humidity profiles with scalar rough-
ness lengths zT and zq replacing z0 in the wind profile relation. Surface tempera-
ture and surface humidity are then defined for these heights. The differences arise
because heat and water vapor must be transferred by molecular diffusion across
the interfacial sublayer. Consequently the resistance to transfer momentum be-
tween the surface and some height must be less than the resistance to transfer heat
or water vapor.

Researchers have defined relationships between zT , zq and z0. These rela-
tionships are different for different types of surfaces, whether they are a) smooth
surfaces, b) surface with roughness obstacles that are impermeable to the wind
flow or c) surfaces with permeable or randomly distributed elements. See Garrat
Chapter 4.2 for a thorough description.

3. Monin-Obukhov Similarity Theory
We can take into account the influence of buoyancy through the Richardson num-
ber Rf or the Obukhov Length L. The way this is generally done is by taking the
dimensionless gradients we had expressed before, which are equal to 1 in neutral
conditions, and expressing them as functions of ζ for non-neutral conditions:
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Figure 1: from Garrat

Based on this term, we define a dimensionless wind shear:

φm(ζ) =
kz

u∗

∂Ui
∂z

(9)
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φH(ζ) =
kz

θSL∗

∂θ

∂z
(10)

φE(ζ) =
kz

qSL∗

∂q

∂z
(11)

(NOTE: substitute the variables for their values in the neutral BL and verify
that these variables=1 in the neutral BL)
The forms of the φ functions have been extensively studied using observations
from many experiments. Observations suggest that:

For −5 < ζ < 0

φm(ζ) = (1 − 16ζ)−1/4 (12)
φH(ζ) = φE(ζ) = (1 − 16ζ)−1/2 (13)

For 0 < ζ < 1
φm = φH = φE = 1 + 5ζ (14)

3a. Integral forms of the flux-gradient relations

i. Wind For the general, non-neutral case, the surface layer wind profile can be
obtained by integrating equation 9:

∂U

∂z
=

u∗φm
kz

(15)

U(z) =
u∗
k

∫ z

z0

(
dz′

z′
− dz′

z′
+ φm

dz′

z′

)
=

u∗
k

[
ln
z

z0
−
∫ z

z0

(1 − φm)
dz′

z′

]
=

u∗
k

[
ln
z

z0
− ψm(ζ)

]
for 0 < ζ <= 1 Stable

ψm = −5ζ (16)

for 1 < ζ Stable
ψm = −5ln(z/z0) (17)
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for ζ < 0 (x = φ−1m = (1 − 16ζ)1/4) Unstable

ψm = 2ln
1 + x

2
+ ln

1 + x2

2
− 2tan−1x+

π

2
(18)

In this form, the effects of buoyancy can be interpreted as a deviation of the
wind speed from the neutral value.

• In unstable conditions 0 < φ < 1 and ψ > 0

• In stable conditions φ > 0 and ψ < 0

Figure 2: Garrat

In the general case where we have two wind measurements at heights 1 and 2,
we can extend the above expression to:

U2 − U1 =
u∗
k

[
ln
z2
z1

− ψm(ζ2) + ψm(ζ1)

]
(19)
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ii. Temperature In analogous form:

k(θ − θ0)

θSL∗
= ln

z

zT
− ψH(ζ) (20)

k(θv − θv0)

θSLv∗
= ln

z

zT
− ψH(ζ) (21)

Here zT is the surface scaling length for temperature. Formally θ = θ0 at z =
zT , and zT is not necessarily equal to z0. Notice that we are assuming the same
nondimensional numbers apply to potential and virtual potential temperature.

for 0 < ζ <= 1 Stable
ψH = ψm = −5ζ (22)

for 1 < ζ Stable
ψH = ψm = −5ln(z/z0) (23)

for ζ < 0 (y = φ−1H = (1 − 16ζ)1/2) Unstable

ψH = 2ln
1 + y

2
(24)

In the general case where we have two temperature measurements at heights
1 and 2, we can extend the above expression to:

k(θ2 − θ1)

θSL∗
= ln

z2
z1

− ψH(ζ2) + ψH(ζ1) (25)

k(θv2 − θv1)

θSL∗
= ln

z2
z1

− ψH(ζ2) + ψH(ζ1) (26)

iii. Humidity In analogous form:

k(q − q0)

qSL∗
= ln

z

zq
− ψE(ζ) (27)

for 0 < ζ <= 1 Stable
ψE = −5ζ (28)

for 1 < ζ Stable
ψE = −5ln(z/z0) (29)
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for ζ < 0 (y = φ−1E = (1 − 16ζ)1/2) Unstable

ψE = 2ln
1 + y

2
(30)

In the general case where we have two humidity measurements at heights 1
and 2, we can extend the above expression to:

k(q2 − q1)

qSL∗
= ln

z2
z1

− ψE(ζ2) + ψE(ζ1) (31)

Observations and theory suggest that ΦE = ΦH and ψE = ψH and zq = zT

3b. Calculating Fluxes using the Flux Profile Method

As we have shown before, if the stability and the flux or stress is known in ad-
vance, then the flux profile method can be used to solve directly for the wind speed
or the potential temperature at any height. However, often these relationships are
used in reverse, to estimate the flux knowing the mean wind or temperature pro-
file. This is much more difficult. Fore example, u∗ appears in a number of places,
explicitly and hidden in L, and L is a function of heat flux, which must be esti-
mated from the temperature profile. Solving these equations involves an iterative
approach.

Notice how we can use the above expressions to calculate the fluxes as:

u∗ =
k[U2 − U1][

ln z2
z1
− ψm(ζ2) + ψm(ζ1)

] (32)

if z1 = z0 then U1=0

(w′θ′)s =
−u∗k(θ2 − θ1)

ln z2
z1
− ψH(ζ2) + ψH(ζ1)

(33)

(w′θ′v)s =
−u∗k(θv2 − θv1)

ln z2
z1
− ψH(ζ2) + ψH(ζ1)

(34)

(w′q′)s =
−u∗k(q2 − q1)

ln z2
z1
− ψE(ζ2) + ψE(ζ1)

(35)

Given the mean wind (U), pressure (P), humidity (q) and temperature (T) at a
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level z and at the ”surface”.

1. From the information given calculate the density of air ρ the latent heat Lv,
θ and θv

2. Calculate u∗, assuming neutral conditions.

3. Calculate w′q′

4. Calculate w′θ′, w′θ′v

5. Calculate L

6. Begin iteration i

(a) If Li > 0 conditions are stable - calculate ψE = ψH and ψm
(b) If Li < 0 conditions are unstable - calculate ψE = ψH and ψm
(c) If Li = 0 conditions are neutral ψE = ψH = ψm = 0

(d) Re-calculate u∗, w′q′, w′θ′ and L using the relationships that depend
on stability ζ

(e) Calculate the difference in the fluxes w′q′, w′θ′ between this iteration
and the previous iteration. If the difference is large, continue to iterate
until your answers converge.

4. Bulk Transfer Relations
For practical applications, we use drag and bulk transfer coefficients to relate
fluxes to mean properties of the flow.

4a. Drag Coefficient

Using the relationship 16, and the definition of friction velocity u∗, a drag coeffi-
cient CDis defined as:

CD =
(u′w′

2
)1/2

U
2 =

u2∗

U
2 =

k2[
ln z

z0
− ψM(ζ)

]2 (36)
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CDN =
k2[
ln z

z0

]2 (37)

CD
CDN

=

[
1 − ψM(ζ)

ln z
z0

]−2
(38)

4b. Heat Transfer Coefficient

By analogy with the drag coefficient, a heat transfer coefficient CH can be defined
using the relationship 35 and the definition of θSL∗ = −w′θ′s/u∗

CH =
QH

U(θ0 − θ)
=

(θ′w′s)

U(θ0 − θ)
(39)

=
(θ′w′s)

−u∗
k

[
ln z

z0
− ψM(ζ)

]
θSL
∗
k

[
ln z

zT
− ψH(ζ)

]
=

k2[
ln z

z0
− ψM(ζ)

] [
ln z

zT
− ψH(ζ)

]
(40)

Where QH is the kinematic sensible heat which is the sensible heat divided by
ρCp

CHN =
k2[

ln z
z0

] [
ln z

zT

] (41)

CH
CHN

=

 1

1 − ψM (ζ)
ln z

z0

 1

1 − ψH(ζ)
ln z

zT

 (42)

Values of CDN/CHN greater than one indicate the more efficient transfer of
momentum than heat as the surface is rougher.

4c. Moisture Transfer Coefficient

By analogy with the heat transfer coefficient, a heat transfer coefficient CE can be
defined using the relationship 27 and the definition of qSL∗ = −w′q′s/u∗

10



CE =
R

U(q0 − q)
=

(q′w′s)

U(q0 − q)
(43)

=
(q′w′s)

−u∗
k

[
ln z

z0
− ψM(ζ)

]
qSL
∗
k

[
ln z

zq
− ψE(ζ)

]
=

k2[
ln z

z0
− ψM(ζ)

] [
ln z

zq
− ψE(ζ)

]
(44)

Where R is the kinematic vertical eddy moisture flux.

CEN =
k2[

ln z
z0

] [
ln z

zq

] (45)

CE
CEN

=

 1

1 − ψM (ζ)
ln z

z0

 1

1 − ψE(ζ)
ln z

zq

 (46)

5. Aerodynamic Resistances
The drag, heat and mass transfer coefficients discussed above take into account
both turbulent transfer and molecular transfer of a property between the surface
and a reference height z in the surface layer. For some applications, it is more
convenient to replace the transfer coefficients by ”quasi-resistance” parameters.
In this approach, the linking of molecular transfer in the interfacial layer and
turbulent transfer in the surface layer is simplified. This relates to the additive
property of resistances in series.
By analogy to Ohm’s law (resistance = potential difference / current). For any
concentration difference (γ0 − γ) and flux Fs

ra = (γ0 − γ)/Fs (47)

ra has dimensions of sm−1. The reciprocal r−1a is the conductance.
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5a. Momentum

From the definition ofCD (equation 36, we define the bulk aerodynamic resistance
to the transfer of momentum from a level z to the surface z = z0 as:

raM =
ρ(u(z) − u(z0))

τs
=
u(z)

u2∗
= (CDu(z))−1 (48)

As CD increases or u(z) increases, the resistance decrease.

5b. Heat

From the definition of CH , we define the bulk aerodynamic resistance to the
transfer of heat from the surface z = z0 to a level z as:

raH =
ρCp(θ0 − θ)

Hvo

= (CHu(z))−1 (49)

Where Hvo = ρCpw′θ′v is the sensible heat flux.

5c. Moisture

From the definition of CE , we define the bulk aerodynamic resistance to the
transfer of moisture from the surface z = z0 to a level z as:

rav =
ρ(q0 − q)

E0

= (CEu(z))−1 (50)

Where Eo = ρw′q′ is the latent heat flux.
It is important to note that under near-neutral conditions, the resistance for

moisture and heat is higher than for momentum.

Figure 3: Figure 3.8 Garrat

The surface values θ0 and q0 must be estimated to use the expressions for the
bulk aerodynamic resistance to sensible and latent heat exchange:

raH =
ρcp(θ0 − θ)

H0

(51)
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raV =
ρ(q0 − q)

E0

(52)
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