1. Surface Layer Scaling

Recall when we spoke about K-Theory when discussing First Order Closure:

We can define a mixing length, | by > = c2"2.

In the surface layer eddies are limited by the earth’s surface. It is assumed that
1?2 = k%22 where k is the von Karman constant, so:
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In reality, the origin of z for a rough surface because the protrusion of rough-
ness elements above the substrate surface displaces the entire flow upwards. We
define the displaced height = = Z — d, where d is the zero-displacement height
and Z is the height above the substrate surface (height above the actual ground
surface).

Hence, for neutral conditions with no buoyancy, in the surface layer (assum-
ing that the stress remains constant throughout the surface layer) we recall the
friction velocity, choosing the x-axis appropriately, reduces to:
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Integration gives the famous log-wind profile for neutral conditions:
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We define the aerodynamic roughness length as z, where U(z,) = 0. Then,
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2. Surface Roughness

The aerodynamic roughness length zj is an important parameter, as is the related
quantity C'p drag coefficient, because they are used to calculate wind profile, sur-
face stresses and fluxes. Wind profiles require: the zero-plane displacement and
the aerodynamic roughness length.

2a. Zero-Plane Displacement

The profile relations we derived involve the height z = Z — d measured relative to
a reference level termed the zero-plane displacement height d. In this relationship
d is chosen so that the wind measured at an actual height Z (U(Z)) satisfies:
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The values of d for specific surfaces were determined from observations of

neutral wind profiles close to the surface. However, this can be applied to non-

neutral surfaces and d is assumed to be independent of stability. We also use the

concept of zero-plane displacement height for the profiles of # and ¢q. In many

cases the relationship:

d
W~ 2/ 7

For h. = height of canopy, gives adequate measure of d, although there is no
physical reason for this ratio to be a constant - as d should also be related to the
density of the canopy. When Z > 10h., then d can be ignored

Table 1: Garrat table A6

2b. Aerodynamic roughness length

The aerodynamic roughness length 2 is a surface length scale defined specifically
by the log wind law for neutral conditions. Within this definition, the extrapolated
wind speed equals zero at the height z = z.



For aerodynamically smooth flow - that is, when the viscous sublayer is deeper
than surface roughness protuberances, experiment shows that:

2o ~ 0.11v/u, (8)

With typical values around 0.01 mm. However, for aerodynamically rough
flow, zp is a complicated function of the surface geometry. Estimates are done
using neutral wind conditions.

e Without many roughness elements, 2z, depends on underlying surface.
e At intermediate element density, drag will increase and so will 2,

e At some point the air will cease to enter the inter-element spaces, and further
increases in density will decrease drag and z

2¢. Scalar Roughness Lengths

We defined the surface-layer temperature and humidity profiles with scalar rough-
ness lengths 27 and z, replacing 2, in the wind profile relation. Surface tempera-
ture and surface humidity are then defined for these heights. The differences arise
because heat and water vapor must be transferred by molecular diffusion across
the interfacial sublayer. Consequently the resistance to transfer momentum be-
tween the surface and some height must be less than the resistance to transfer heat
or water vapor.

Researchers have defined relationships between 27, 2z, and z,. These rela-
tionships are different for different types of surfaces, whether they are a) smooth
surfaces, b) surface with roughness obstacles that are impermeable to the wind
flow or ¢) surfaces with permeable or randomly distributed elements. See Garrat
Chapter 4.2 for a thorough description.

3. Monin-Obukhov Similarity Theory

We can take into account the influence of buoyancy through the Richardson num-
ber Iy or the Obukhov Length L. The way this is generally done is by taking the
dimensionless gradients we had expressed before, which are equal to 1 in neutral
conditions, and expressing them as functions of ¢ for non-neutral conditions:



290 Appendices

The aerodynamic roughness length and the zero-plane displacement
Values of zg and d/h, are given in Table A6 for a range of natural surfaces and
values of k.. Additional values of z, and d/h., usually in tabular form, can be
found in e.g. Sutton (1953), Brutsaert (1982), Pielke (1984} and Stull (1988)
though many values are based on the same original source. The wind depend-
ence for flexible crops and grasses is not included here; that for the sea can be
deduced from Eqgs. 4.5 and 4.23.

Table A6, Values of aerodynamic roughness lengih and zero-plane displacement

for a range of naiural surfaces

Surface Reference he (m) 2 (m) dfhe
soils 0.0 —0.01
grass
thick Surton (1953) 0.1 .23
thin Sutton (1953) 0.5 (.05
sparse Clarke et al. (1971} 0.025 0.0012
Dieacon (1953) 0.015 0,002

0.45 0.018

0.65 0.039
crops
wheat stubble Izumi {1971) 0.18 0.025
wheat Garratt (1977h) 0.25 0005

0.4 0.015

1.0 0.05
corn Kung (15961) 0.8 0064
beans Thom (1971) 1.18 0077
vines Hicks (1973) 0.9 0,023

14 0128
vepgetation Fichtl and Mc¥ehil (1970) 1-2 0.2
woodland
trees Fichtl and McWVehil {1970) 10-15 0.4
savannah Garrant {1960) & 0.4 0.6

9.5 0.9 0.75
forests
pine Hicks ef ai. {1975) 12.4 0,32
pine Thom et al. (1975) 13.3 0,53

15.8 092
cohiferous Tarvis et al. (1976) 10.4°=27.5 0.28-3.9 0.61-0.92
trapical Thomson and Pinker (1975) k] 4.8
tropical Shuttleworth {1989) s 2.2 (L85

*Flow paralle]l w rows.
b Elow normal to rows.
‘Range in k. for 11 sites: the mean zo/h. is 0,076 and the mean d/h is 0.78.

Figure 1: from Garrat

Based on this term, we define a dimensionless wind shear:
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(NOTE: substitute the variables for their values in the neutral BL and verify
that these variables=1 in the neutral BL)
The forms of the ¢ functions have been extensively studied using observations
from many experiments. Observations suggest that:

For -5 < (<0
Om(C) = (1—16¢)"* (12)
or(() = op(()=(1-16¢)""" (13)
ForO0 < (<1
Om =0y = ¢p =1+ 5C (14)

3a. Integral forms of the flux-gradient relations

i. Wind For the general, non-neutral case, the surface layer wind profile can be
obtained by integrating equation 9:
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for 0 < ¢ <=1 Stable
Y = —5¢ (16)
for 1 < ( Stable
Y = —bln(z/z) (17)



for ( <0 (x = ¢, = (1 — 16¢)*/*) Unstable

1 1+ 22
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In this form, the effects of buoyancy can be interpreted as a deviation of the
wind speed from the neutral value.

e In unstable conditions 0 < ¢ < 1 and ) > 0

e In stable conditions ¢ > 0 and ¢ < 0
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In the general case where we have two wind measurements at heights 1 and 2,

we can extend the above expression to:

T-Ti=" lnj—j — (o) + Y1) (19)



ii. Temperature In analogous form:

k(6 — 6,) z
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Here 27 is the surface scaling length for temperature. Formally 6 = 6, at z =
zr, and 27 1s not necessarily equal to z,. Notice that we are assuming the same
nondimensional numbers apply to potential and virtual potential temperature.

for 0 < ¢ <=1 Stable

Y = Pm = —5¢ (22)
for 1 < (¢ Stable
Y = Y = —5In(z/20) (23)
for ( < 0(y = ¢5' = (1 — 16¢)'/?) Unstable
Vgt = 2In JQF Y (24)

In the general case where we have two temperature measurements at heights
1 and 2, we can extend the above expression to:
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iii. Humidity In analogous form:

% = In— = ¥(0) @7)
for 0 < ¢ <=1 Stable
Yp = —5¢ (28)
for 1 < (¢ Stable
Y = —bln(z/z) (29)



for ( < 0(y = ¢5' = (1 —16¢)"/?) Unstable
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Vg = 2n (30)

In the general case where we have two humidity measurements at heights 1
and 2, we can extend the above expression to:
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Observations and theory suggest that @y = @ and g = ¢y and 2z, = 2p

= lnz—j — V() +¥r(C) (31)

3b. Calculating Fluxes using the Flux Profile Method

As we have shown before, if the stability and the flux or stress is known in ad-
vance, then the flux profile method can be used to solve directly for the wind speed
or the potential temperature at any height. However, often these relationships are
used in reverse, to estimate the flux knowing the mean wind or temperature pro-
file. This is much more difficult. Fore example, u, appears in a number of places,
explicitly and hidden in L, and L is a function of heat flux, which must be esti-
mated from the temperature profile. Solving these equations involves an iterative
approach.

Notice how we can use the above expressions to calculate the fluxes as:
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Given the mean wind (U), pressure (P), humidity (q) and temperature (T) at a



level z and at the ”surface”.

1.

From the information given calculate the density of air p the latent heat L,,
@ and 6,

. Calculate u,, assuming neutral conditions.

. Calculate w'q’

Calculate w'¢/, w'0),
Calculate L
Begin iteration ¢

(a) If L* > 0 conditions are stable - calculate 1z = 15 and 1,,
(b) If L* < 0 conditions are unstable - calculate v = 1y and v,
(c) If L* = 0 conditions are neutral {5 = ¥y = ¥, = 0

(d) Re-calculate u,, w'q’, w'#’ and L using the relationships that depend
on stability ¢

(e) Calculate the difference in the fluxes w’q’, w’¢’ between this iteration
and the previous iteration. If the difference is large, continue to iterate
until your answers converge.

4. Bulk Transfer Relations

For practical applications, we use drag and bulk transfer coefficients to relate
fluxes to mean properties of the flow.

d4a. Drag Coefficient

Using the relationship 16, and the definition of friction velocity u., a drag coeffi-
cient C'pis defined as:
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Cpy = (37)
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4b. Heat Transfer Coefficient

By analogy with the drag coefficient, a heat transfer coefficient C'y; can be defined

using the relationship 35 and the definition of #5* = —w/0’ /u,
Cy==n_ _ _OW) (39)
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Where ()4 is the kinematic sensible heat which is the sensible heat divided by
pCl

/{}2
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Values of Cpy/Cyn greater than one indicate the more efficient transfer of
momentum than heat as the surface is rougher.

4c. Moisture Transfer Coefficient

By analogy with the heat transfer coefficient, a heat transfer coefficient C'z can be
defined using the relationship 27 and the definition of ¢°1 = —w'q /u.
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Where R is the kinematic vertical eddy moisture flux.
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5. Aerodynamic Resistances

The drag, heat and mass transfer coefficients discussed above take into account
both turbulent transfer and molecular transfer of a property between the surface
and a reference height z in the surface layer. For some applications, it is more
convenient to replace the transfer coefficients by ’quasi-resistance” parameters.
In this approach, the linking of molecular transfer in the interfacial layer and
turbulent transfer in the surface layer is simplified. This relates to the additive
property of resistances in series.

By analogy to Ohm’s law (resistance = potential difference / current). For any
concentration difference (7o — ) and flux Fj

ra = (%0 —7)/Fs (47)

7, has dimensions of sm~!. The reciprocal r; ! is the conductance.
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S5a. Momentum

From the definition of C'p (equation 36, we define the bulk aerodynamic resistance
to the transfer of momentum from a level z to the surface z = z; as:

S p(u(z) — u(z)) _ u(z) — (Cpu(z))"! (48)

Ts u?

As Cp increases or u(z) increases, the resistance decrease.

5b. Heat

From the definition of C'y , we define the bulk aerodynamic resistance to the
transfer of heat from the surface z = z; to a level z as:

_ pCy(6y — 0)
H’UO
Where H,, = pC,w'0 is the sensible heat flux.

= (Chu(z))™* (49)
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Sc. Moisture

From the definition of C'r , we define the bulk aerodynamic resistance to the
transfer of moisture from the surface z = 2, to a level z as:

Faw = w = (Cpu(z))~ (50)
0

Where E, = pw'q’ is the latent heat flux.
It is important to note that under near-neutral conditions, the resistance for
moisture and heat is higher than for momentum.

Figure 3: Figure 3.8 Garrat

The surface values 6, and gy must be estimated to use the expressions for the
bulk aerodynamic resistance to sensible and latent heat exchange:

pep(bo — 0)

0, (D

TaH =
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p(g0 — q)

Tav = —F—— (52)
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