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Fiqure 5.20 Visible satellite image of convective out-
flowe from 2000 UTC 31 May 1995, with &, contours
onerlaid, Dutflow boundaries are indicated using the sym-
bology introduced in Fgure 5.1, & dryline {Section §.2%
is also analyzed vsing unfilled scallops. {Adapted from
Wakimoto of al, [20040].)
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Figure 5.21 Radar reflectivity image showing a nearly circular outflow boundary produced by storms east of Derver, CO,
manifested as a reflectivity fine-line.



Figure 5.22 FPhotograph of a shelf cloud along the
leading edge of an outflow boundary. Photograph by Eric
MaLyen.

Bucks County, Pennsylvania (Washington Post)



{a) reflectivity

b} radial velocity

Figure 526 Radar obcrvations of o qust froot Jmeing from Lot to dght} having density cument charctedstics, The
data were obiained by the Dopplar On Wheels (DOW) radar. (a) Reflactiviby factor (reflectivities are uncalibrated) in dBZ,
(b} Radial velocity in m 1.
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Flgure 523  Concaptual model of surface observations during the passage of 3 qust front in 115 mamure stage. Note tat
part of the pressure excess is due to nonhydrostatic effects (cf. Figure Z.6). (Adapiad from Wakimoto [1982].)
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Figure 5.24 FRijitas early model of squall-line circulation, showing high- and low-pressure ragions at the wurface.
{Adapted from Fujita [1955].)
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Fiqurz 527  Mumerslsimulzton of 2 dersity cument presenting stroctums meulbing from lobe ard ceftinszblity fop
1zosurfaes of potertial tempertume @lder than the ambent potential temperture; botiom, top wiew of the simubted
dersity cumant at four szlectfimes). Lobe and cleftstrudums am ako evidentin the derstty curerd shownin Figure 525,
Mdapted from Lee and Finley [2002]%
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Our first steps toward Rotunno, Klemp, Wilhelmson

(RKW) Theory...

Mesovortices typically develop within mature-to-decaying MCSs. However, so far
we have not examined the factors that determine the longevity of MCSs or squall
lines. This issue has been studied by Rotunno et al. (1988) [hereafter referred to
as RKW], among others. They consider the dynamics of squall lines in terms of the
generation of vorticity n about a horizontal axis perpendicular to the squall line by
horizontal buoyancy gradients. Referring to the vorticity fields illustrated in Fig. 20,
with the z-direction to the right, the vorticity equation is

where

d OB
Vorticity from wind
s nts in x-z plane
=5, -5, Compone P

and B = total buoyancy = gHU'/év. Using mass continuity,

(7.14) becomes

N

o

o o
e 0

0 0 0B

U = W — = . 7.15
&Eun Bzwn ox ( )

Expand total derivative



Consider the cold pool illustrated below:

| |
g = =
| |
; ok ok ok %k ok >k ok ok sk ok sk ok Il =
| Cold s ]
| Pool * |
L R

We fix ourselves in a frame of reference moving with the edge of the cold air and
integrate (7.15) from a point to the left, z = L, to a point to the right, z = R, of the
cold-air edge, and from the ground to some level, z = d, and obtain

Q%/LR/Od ndzdai:/Od (un)Ldz—/Od (un)g dz

N— - ~ — J
tendency flux at left flux at right
R d
-/ (wn)q d:c+/ (B: — Balds . (7.16)
L 0
flux ;rt top net generation

Vorticity tendency =

Net advection of vorticity from sides + difference in buoyancy



Simplifying Vertical velocity

assumptions
] zero at top
|
= =
! !
| ook ok ok ok ook ok sk ok || e I
[ Cold * [
. P x
Zonal wind | - |
— No shear
zero on L R on right
lower left .
side (u=0)

Since we are looking for a steady balance, we set the tendency term to zero. Also,
in the circumstances investigated by RKW, there is negligible buoyancy of the air
approaching the cold pool, so Bg = 0. Finally, note that n = Ou/dz away from the
edge of the cold air. Under these conditions, (7.16) becomes

7, 2 2 2

o /LR(wn)d di + /Od Brdz . {(7.37)

Consider the situation where the cold air is stagnant (relative to the cold-air edge),
so ur o = 0, and restricted to a height, z = H, where H < d. Thus,

9 2 2 R H
.. Sia <UR,d - uR,O) _/ (wn)q dz +/ By dz . (7.18)
0

2 2 2 I

Consider first the case where there is no shear at x = R and a rigid plate at z = d.
Under these conditions the second and third terms on the right-hand-side of (7.18)
vanish and we obtain

iy =2 (-Br)dz=c?
= 2g.H
where —Bp = —gAf#/6y = ¢' and the temperature deficit in the cold pool Af has

been assumed constant. This reduces to the famous von Karmén formula for speed
of gravity current as d — oo since ur,  — Ug.

Result: zonal wind at the upper boundary travels
at the speed of a gravity current due to presence
of the cold pool
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