
Dynamic pressure and its 
importance on the mesoscale, 

non-hydrostatic modeling



Simplified equations of motion for 
convection on mesoscale
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Linearize, Boussinesq approx.

Buoyancy
Can also be written 
in terms of potential 
temperature 
(Boussinesq
approx.)

Full equation

ASIDE: Absolutely no Coriolis effects 
here!  Dynamic pressure effects relevant 
mostly at meso-gamma scale (order km) 
for situations of deep convection
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Invoking a shallow water assumption, our first term on LHS vanishes because:
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Linearize about the following state:
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Differentiate u and v momentum equations with respect to x and y, respectively, 
then add together..

Add w momentum equation, differentiated with respect to z and assuming 
constant mean density, to get a divergence equation:

Assume a linearly 
varying mean vertical 
wind profile of u and v, 
for simplicity.  
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Laplacian equation for pressure perturbation = dynamic pressure + buoyancy

Linear dynamic contribution: Interaction of environmental shear with updraft 
vertical velocity (i.e. rotation of horizontal environmental vorticity into vertical)

Non-linear dynamic contributions: Fluid extension terms and shear terms

Fluid extension Shear



Contributions to dynamic 
pressure by linear dynamics
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Since a Laplacian tends to change the sign of the variable on which it operates:

For an updraft in an environment of positive unidirectional zonal shear, 
Positive perturbation pressure on upshear side of updraft
Negative perturbation pressure on downshear side of updraft
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Physical interpretation: Vertical advection by an updraft of horizontal 
momentum associated with environmental shear is balanced by pressure 
gradient force. 
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Contribution to pressure perturbation by 
non-linear dynamics

Shearing terms:









∂
′∂

∂
′∂

+
∂
′∂

∂
′∂

+
∂
′∂

∂
′∂

−∝′∇
y
w

z
v

x
w

z
u

x
v

y
updynNLshear 22




















∂
′∂

−
∂
′∂

−







∂
′∂

+
∂
′∂

+







∂
′∂

−
∂
′∂

−







∂
′∂

+
∂
′∂

+







∂
′∂

−
∂
′∂

−







∂
′∂

+
∂
′∂

−=
222222

2
1

z
v

y
w

z
v

y
w

x
w

z
u

x
w

z
u

y
u

x
v

y
u

x
v

Can express with deformation and vorticity terms in all directions:



Shearing terms:
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Can express with deformation and vorticity terms in all directions:

Consider tilting of unidirectional shear by an updraft, such that all deformation 
terms and horizontal vorticity terms (i.e. crossed out terms) are zero.  All that 
is left is vertical vorticity.
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2ζ ′−∝′dynNLshearp Again, sign changes with Laplacian inversion

Result: Non-linear shearing terms produce low perturbation pressure in the 
vicinity of mid-level  anticyclonic and cyclonic vorticity induced by the updraft.



Effect of non-linear pressure
perturbation terms (shearing)

In unidirectional shear

Have formation of mid-level 
vorticies at storm flanks.   
Results from tilting of horizontal 
vorticity of the environment by 
updrafts results in perturbation 
low pressure.  

This DOES NOT depend on the 
direction of rotation!

The upward directed pressure 
gradient at storm flanks will 
tend to enhance updrafts at 
the sides of the storm.





Simplified Klemp-Wilhelmson model 
dynamical core

Can be used to simulate a rising warm (positively buoyant) bubble.  From 
Robert Fovell modeling course notes.  

A non-hydrostatic numerical model must have a way to represent 
dynamic pressure, typically through a prognostic equation.











At hydrostatic limit, the vertical 
pressure perturbation  0, no 
rising motion
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