Investigation of MCS Cloud-precipitation Processes and Properties through an integrative analysis of aircraft in-situ measurements, ground-based remote sensing and WRF simulations

Xiquan Dong, University of Arizona

Outline
I) MCS cloud and precipitation
A: Lifecycle of classified MCS's components
B: Evaluation of WRF simulated precipitation using
Stage IV dataset
C: Aircraft in-situ measurement and surface
retrievals during MC3E
II) MBL aerosol and cloud properties
III) CMIP5 evaluation using satellite observations

Part IA: Lifecycle of classified MCS's components

• Feng et al. 2011 and 2012 (JGR)

Why do we need to study Mesoscale Convective System (MCS)

MCS has two main components

- Cumulus tower: important to hydrologic cycle and atmospheric circulation due to heavy rainfall
- Cirrus anvil cloud: dominate radiation budget due to large area coverage
- High impacts on both weather and climate

Cirrus anvil (Non-precipitating)

Cumulus Tower (**Precipitating**)

Studying DCS cloud and precipitation during MC3E

Why we need satellite observations?

NEXRAD data associated with the GOESretrieved cold cloud-top temperatures (yellow color) However the stratiform regions (especially for cirrus anvils) (white color) were not observed by **NEXRAD.**

Radar Classification Example

What are their 3D structures ?

This 3-D database will be used to investigate the vertical and spatial structures of a MCS.

dissipation processes of a MCS

-105

200 190

-105

-100

-95

-90

Derive statistics for each system using information from hybrid classification -80

-85

Define Life Cycle Stages

- Reason: composite systems with different lifetimes
- Based on tendency of system size and T_{IR}
- Developing (1, 2)
 - Before reaching min T_{IR}
 - Warm developing $(T_{IR} > 220K)$
 - Cold developing $(T_{IR} < 220K)$
- Mature (3)
 - Min T_{IR} < time < Max Radius</p>
- Dissipating (4, 5)
 - Cold dissipating
 - Warm dissipating
- Group all systems based on defined stages

- <u>Time period</u>: May-Aug, 2010-2011 (hourly data)
- Total number of tracked systems: 3995
- CC expands quickly in developing stage, reach maximum between cold developing/mature stage
- SR/AC size have similar tendency: gradually grow and reach maxima at cold dissipating stage
- CC area: 9%, SR area: 18%, AC area:73%

Precipitation Evolution

- Precipitation comes almost exclusively from convective rain in developing and mature stage
- Stratiform rain gradually becomes more important as system dissipates
- CC/SR rain rate evolution similar to sizes
- PR_{cc} is 10 × PR_{sr}

Part IA: Summary

1) Developed a method to classify the MCS's components (CC, SR, and AC) and then investigate their cloud and precipitation properties.

2) Developed a tracking method to track the MCS's lifetime and to investigate the MCS's formation-dissipation processes, as well as their precipitation properties, such as → MCS component sizes increase with lifetime → CC area: 9%, SR area: 18%, AC area: 73% → PR_{cc} is 10× PR_{SR}

Part IB.

Evaluation of NSSL WRF simulated precipitation using Stage IV dataset

Wang et al. 2018 MWR

To evaluate the NSSL-WRF simulated heavy precipitation by

- Regions: (SGP vs. NGP)
- Primary precipitation type: (convective rain CR vs. stratiform rain SR)
- Dominant atmospheric synoptic pattern: (extratropical cyclone vs. subtropical ridge).

Specifications of Evaluation

- Location: SGP and NGP
- Duration: 2007-2014 warm season (Apr. Sep.)
- **Target:** Heavy precipitation events (upper 90% of regional precipitation)
- Classification method: Self-Organizing Map (SOM)
- Classification input: NARR data (MSLP, wind/geopotential/RH/ at 500/900 hPa)
- Observation: NCEP Stage IV
- Simulation: Long-term WRF by NSSL

Self-Organizing Map Method (SOM) Results at SGP

(mb)

30-105

-100

-95

-90

(%)

WRF Evaluation (SGP)

SGP Warm Season Annual Precipitation and Directional Variation

- Total precipitation: Type 1 > Type2
- Spatial pattern: Type 1 zonal gradient (west-East);

Type 2 meridional gradient (North-South)

• WRF: Negative bias; Type 1 better than Type 2

From left to right, diurnal variation becomes stronger

Classes 1 and 4: (1) Flat diurnal variation (SR); (2) Bi-modal pattern; (3) WRF well simulates

Classes 3 and 5:

(1) The largest diurnal variation, (2) Follows the typical pattern,
 (3) Daytime WRF well matches, (4) Nighttime WRF severely
 undersimulates, and (5) Simulated convection ends too soon

SR vs. CR Components

Summary of Part IB

- SOM works well for the separation of synoptic patterns (extratropical vs. subtropical) and the dominant precipitation types (SR vs. CR)
- WRF better matches in overall CR intensity/coverage than SR
- Better simulation in extratropical cyclone than subtropical ridge

Part IC: Aircraft in-situ measurement and surface retrievals during MC3E

• Wang et al. (2015) and Tian et al. (2016)

2011.05.20 00:00 UTC

How can we provide reliable ice cloud properties of DCS from aircraft in situ data?

Outstanding Issue:

Nevzorov probe measured IWCs are lower than ground truth because it can only measure D_{max}< 4 mm.

Approach

<u>Step 1</u>: Using multi-sensor to eliminate SLWC

<u>Step2</u>: Constructed a full spectrum of PSDs from 2DC+HVPS (D=120–30,000 μm)

<u>Step3</u>: Build a new massdimension relation IWC_{NEV}(D_{max}<4 mm)~ 0.00365D^{2.1}

<u>Step 4:</u> Applying this relationship to a full spectrum of PSDs to calculate IWCs (best-estimated)

Cloud Top (14:30 UTC) : D_{max}<4 mm, the Nevzorov-measured IWCs are almost the same as the best-estimated IWCs.

Near Melting band (13:45 UTC): D_{max}>4 mm, Nevzorov IWCs << best-estimated IWCs

Retrieve Ice Microphysical Properties

ICE

LIQUID

APPLICATION

PROPOSE

Using empirical relationships from aircraft (Wang et al., 2015), we can estimate the ice water content using radar reflectivity.

$$\frac{Z_e}{\mathrm{IWC}} = \frac{\frac{|K_i|^2}{|K_w|^2} \left(\frac{6}{\rho_i \pi}\right)^2 \int_{D_{\min}}^{D_{\max}} m(D)^2 D^{\mu} e^{-\lambda D} dD}{\int_{D_{\min}}^{D_{\max}} m(D) D^{\mu} e^{-\lambda D} dD}$$

$$N(D) = N_0 D^{\mu} e^{-\lambda D}$$

$$\mathsf{IWC} = \int_{D_{\min}}^{D_{\max}} m(D) \ N(D) dD_{2}$$

 $m(D) = 3.65 \times 10^{-3} \,\mathrm{g \, cm^{-2.1} \, D^{2.1}}$

Validating NEXRAD retrieved IWCs using aircraft in situ measurements

<u>Statistical analysis of warm season MCs ice cloud</u> <u>microphysical properties</u>

Do IWPs have similar spatial distributions as precipitation?

(iguan Dong's research group (2018-19)

My group is currently supported by NASA CERES, NESSF and GSFC; DOE CMDV and CESM; NOAA R20 project; and NSF

SIXTEEN