
Idealized dynamical perspective of 

baroclinic instability: Eady Problem 

Conceptual setup 

 

Frictionless, hydrostatic, f-plane in 

vertical 

 

Consider 2-D plane in x-z with 

rigid lid on top and bottom 

 

Linear vertical wind shear profile 

(implies baroclinicity, why???) 

 

Basic state potential vorticity (q) 

of zero in the interior of domain 

 

Initial sources of PV on upper and 

lower boundaries. 

  

Vertical 

wind profile 

Z = 0 

Z = TOA 

PV Source 

(upper) 

PV Source 

(lower) 

q > 0 

q > 0 

q = 0 



Physical implication of solution 

 

Assuming a wave solution, a dispersion 

relation can be constructed for phase 

speed 

 

Because there are real and imaginary 

parts to the phase speed solution, 

possibility for exponential growth 

 

Amplification = PV sources are within a 

preferred range of distance that they 

begin to interact with each other. 

 

Growing solutions only occur for 

wavelengths greater than ~2500 km 

Short-wave cutoff 

 

Fastest growing waves about ~4000 km  

Most unstable Eady mode. 

Vertical 

wind speed 

profile 

Z = 0 

Z = TOA 

PV Source 

(upper) 

PV Source 

(lower) 

q > 0 

q > 0 

q = 0 



Characteristics of most unstable 

Eady mode 

 

Tilted structure to highs and lows 

(as seen by streamfunction solution) 

 

Isobars cross isotherms 

 

Maximum southerly winds and rising 

motion ahead of upper-level low 

 

Maximum northerly winds and 

sinking motion ahead of upper-level 

high 

 

Just about what you get for a real 

mid-latitude cyclone in the 

mature to occluded stage! 

 

 

  



Now…we want the more 

quantitative, thorough 

consideration of the analytic 

model just described… 

 

Hang on, folks, here comes the 

heavy math ):0 



Defining a basic, mean state of the atmosphere in  

geostrophic and hydrostatic balance 
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Geopotential varies only in vertical 

and meridional directions 

Zero mean meridional wind 

Zero vertical velocity 



Geostrophic potential vorticity (Q) equation 
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Linearize the PV equation 
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Linearized PV: Local time tendency + Advection + eddy conversion 

from the large-scale meridional PV gradient  

Change in large-scale meridional PV gradient (will be assumed zero in Eady 

problem) 

Perturbation PV: 



Linearize the thermodynamic energy equation 

02 











wN

zdt

d

Thermodynamic energy equation (adiabatic) 
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Rigid lid boundary conditions at z=0 and z=ztop (no vertical motion) 

Linearized thermodynamic  

Applying geostrophic wind relation to second term on RHS:  



Assume a wave solution to linearized PV, 

thermodynamic equations 
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Express the geopotential anomaly as the product of a structure function and 

waveform with wavenumber k (in zonal direction): 

Result after substitution into the equation for the linearized PV equation:  

Result after substitution into the equation for the linearized thermodynamic 

equation: 
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The eigenvalue solutions of these geopotential height structure function 

equations can be used to: 

1. Determine if flow is (exponentially unstable) 

2. Find most unstable wavenumber solution and e-folding time 

 

Eady problem creates one possible simplified version of these equations 

based on a set of predetermined assumptions and then arrives at a 

dispersion relation (equation for c) to assess stability. 

 

Need an analytic solution to the 

geopotential height structure function 

Structure function for linearized PV equation: will apply in the 

interior of the domain of the Eady model 

Structure function for linearized thermodynamic equation: will apply in 

the bottom and top boundary conditions of the Eady model 



Rayleigh and Fjortoft’s theorems: Define 

requisite conditions for existence of unstable 

modes with (meridional) shear (ci >0) 

Barotropic instability Baroclinic instability 

Rayleigh’s condition 

Fjortoft’s condition 

The meridional PV 

gradient must change 

sign in the domain 

The absolute meridional 

vorticity gradient must 

change sign in the 

domain 

Meridional vorticity 

gradient must be 

positively correlated with 

zonal wind. 

Meridional PV gradient 

must be positively 

correlated with zonal 

wind.  

We’re skipping over the formalized mathematical proofs of these theorems (see 

Gill and Pedlosky texbooks) 



Idealized dynamical perspective of 

baroclinic instability: Eady Problem 

Conceptual setup 

 

Frictionless, hydrostatic, f-plane in 

vertical 

 

Consider 2-D plane in x-z with rigid 

lid on top and bottom 

 

Linear vertical wind shear profile 

that implies meridional temperature 

gradient by thermal wind  

 

Basic state potential vorticity (q) of 

zero in the interior of domain 

 

Initial sources of PV on upper and 

lower boundaries. 

  

Vertical 

wind profile 

Z = 0 

Z = TOA 

PV Source 

(upper) 

PV Source 

(lower) 

qb > 0 

qb > 0 

qi = 0 



Are Rayleigh and Fjortoft’s conditions 

satisfied for Eady model? 

Total PV (q) = Interior PV(qi) + Boundary PV (qb) 
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Recalling that there’s no PV in model interior, meridional PV gradient is: 
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The boundary PV anomalies are considered mathematically as delta functions on 

the top and bottom boundaries.  The difference in sign arises because of the 

vertical integration of the last term on the RHS of previous equation. 

Utilizing geostrophic wind relationships, meridional PV gradient can be 

expressed as function of vertical wind shear of zonal wind: 
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Rayleigh condition satisfied 

because meridional vorticity 

gradient changes sign in the 

domain 

 

Fjortoft’s condition satisfied 

because the meridional vorticity 

gradient is positively correlated 

with zonal wind profile (since u is 

linearly increasing from a value of 

zero at the surface) 

Meridional PV gradient equation is what is needed to assess whether Rayleigh 

and Fjortoft’s conditions for baroclinic instability are satisfied for Eady problem: 

Ztop 

Zsfc 



Simplified PV and thermodynamic 

structure equations for Eady problem 
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Now, both with Eady problem assumptions applied… 
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Potential vorticity: interior Thermodynamic: boundaries 
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Since the structure equations are homogeneous in y and z directions, we can 

assume (where l is a wavenumber in y): 

Rewriting the structure equations invoking this additional assumption, we can 

further simplify them to an analytic form we can solve to get the dispersion 

relation (by solving an second order differential equation): 

  0ˆ
ˆ







z
cz

Potential vorticity: interior Thermodynamic: boundaries 



Deriving a dispersion relation 

 for Eady system 
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Then the Eady PV structure equation simplifies to: 

Subject to the boundary conditions (by thermodynamic equation) 

at z=0 and z=ztop=H: 
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The solution to this differential equation is: 
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If the bracketed square root term is less than zero, the solution is 

exponentially unstable because ci > 0.  The unstable solutions will 

define the range of conditions where we have spontaneously 

amplifying baroclinic waves.   

 

These conditions will be dependent on all the environmental 

parameters assumed as “constants” in the Eady problem (vertical 

wind shear, stability, Coriolis parameter).    

This equation set defines a homogeneous system with two unknowns that can 

be solved to get a solution for phase speed (c), or the dispersion relation: 
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Defining the range of unstable  

Eady solutions 
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Considering just the square root term, want to determine where the limit of 

instability in the solutions is by setting this part equal to zero.  This will define 

the short wave cutoff beyond which exponential growth will not occur. 
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Employing the trigonometric identity 

Solution for short-wave cutoff: 
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Solution for short-wave cutoff: 
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The critical value for the shortwave cutoff: 
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The approximate solution to this transcendental equation is: 

Or, if we assume square waves (k=l), the short wave cutoff considering the 

Rossby radius of deformation (Lr = NH/fo) is  

rL
lk

76.522 

The shortwave cutoff is the range of 2000-3000 km, depending on  

specific values of Lr. 



Wavelength for maximum growth (Lm) 
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timescale of most 

unstable wave 

(1-2 days) 

Considering k=l 



Characteristics of most unstable 

Eady mode 

 

Tilted structure to highs and lows 

(as seen by streamfunction solution) 

 

Isobars cross isotherms 

 

Maximum southerly winds and rising 

motion ahead of upper-level low 

 

Maximum northerly winds and 

sinking motion ahead of upper-level 

high 

 

Just about what you get for a real 

mid-latitude cyclone in the 

mature to occluded stage! 

 

 

  


