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ABSTRACT

For numerical weather prediction with primitive equations (the Eulerian hydrodynamic equations modi-
fied by the assumption of hydrostatic equilibrium), various coordinate systems are used to represent the
vertical structure of the atmosphere. In this paper, we review the essential features of prediction equations,
satisfying the conservation of mass and total energy, in various vertical coordinate systems. We formulate
the equations of horizontal motion, hydrostatic balance, mass continuity, and thermodynamics using a
generalized vertical coordinate in which any variable that gives a single-valued monotonic relationship
with a geometric height can be used as a vertical coordinate. Conditions to conserve total energy in a gen-
eralized vertical coordinate are investigated.

Various prediction schemes using pressure, height, and potential temperature as a vertical coordinate
are derived from the set of basic equations in the generalized coordinate system. These three coordinate
systems are unique in that the features of prediction equations in each system are all distinct. We place
special emphasis on handling the earth’s orography as the lower boundary condition. As an extension of
the original idea of Phillips applied to the pressure-coordinate system, we propose transformed height and
isentropic systems. In those systems, both the top of the model atmosphere and the earth’s surface are
always coordinate surfaces. It is hoped that these new schemes, as in the case of the Phillips’ sigma-system,
will enable us to handle the effect of the earth’s orography in the prediction models without lengthy coding
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logic.

1. Introduction

The motions of the atmosphere are governed by
physical laws described by the equations of hydro-
dynamics and thermodynamics. These equations are
well known in principle, although specification of
frictional terms and heat sources as functions of
dependent variables (state functions) in the equations
requires knowledge of physical processes operating in
the atmosphere. The evolution of flow patterns may be
predicted by integrating the basic equations with respect
to time starting from initial conditions. Since the basic
equations are nonlinear and not amenable to solution
by analytical methods, we must resort to the numerical
approach. This requires the representation of dependent
variables of the partial differential equations by a
finite number of functions which depend on the in-
dependent variables—referred to as the coordinate
variable.

The purpose of this paper is to review various vertical
coordinate systems used for numerical weather predic-
tion to represent the state functions in the vertical
and to compare various prediction schemes based on
primitive equations (the Eulerian hydrodynamic
equations modified by the assumption of hydrostatic
equilibrium). It is natural to consider geometrical

1The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

altitude as a vertical coordinate as in Richardson
(1922). Despite the conceptual simplicity of geo-
metrical height, the height coordinate system had never
been used extensively in numerical weather prediction
until Kasahara and Washington (1967) reformulated
Richardson’s approach for high-speed- computers.

The use of pressure as a vertical coordinate became
very popular during the 1930s. As shown by Sutcliffe
and Godart (Sutcliffe, 1947) and Eliassen (1949), the
mass continuity equation reduces to a diagnostic
equation in the pressure coordinate system and a
measure of the vertical motion can be obtained in a
simple form. This made the theoretical analysis of
large-scale motions easier, particularly with quasi-
geostrophic models. Many numerical models with
pressure as a vertical coordinate were proposed and
successfully tested. Among them were those of Charney
and Phillips (1953) using a quasi-geostrophic model and
Hinkelmann (1959) and Leith (1965) using primitive
equation models,

The pressure coordinate system has certain compu-
tational disadvantages in the vicinity of the mountains
because the lower limit of the atmosphere is not a
coordinate surface. In fact, there have been very few
attempts to incorporate the earth’s orography in the
pressure coordinate system. To circumvent this diffi-
culty, Phillips (1957) proposed the so-called sigma-
system, which is a modified version of the pressure
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coordinate system in that the earth’s surface is always
a coordinate surface. The sigma-coordinate system was
adopted in many numerical weather prediction models
in the 1960s based on primitive equations (e.g., Smagor-
insky et al., 1965).

Recently, interest has been revived in the use of
potential temperature as a vertical coordinate for
objective synoptic analysis (Shapiro and Hastings,
1973) and for weather prediction with a quasi-
geostrophic model (Bleck, 1973) and with primitive
equation models (Eliassen and Raustein, 1968, 1970;
Shapiro, 1973). The use of potential temperature as a
vertical coordinate seems to be particularly suitable
for resolving details of frontal structure. Yet, in han-
dling the lower boundary conditions in the isentropic
coordinate system, we face the same degree of com-
plexity as in the isobaric coordinate system.

It is still not clear which vertical coordinate system
is best suited for numerical weather prediction, since
each has its advantages and disadvantages. Major
questions in choosing a vertical coordinate system are:
Which system can represent the vertical structure of
the atmosphere with the least amount of wvertical
resolution? Which system can best handle the earth’s
orography?

In the pressure, height and potential temperature
coordinate systems, a special procedure is needed to
take into account the effect of the earth’s orography.
This consists of examining in the computer program
the height of mountains and dealing with lateral
boundary conditions at the grid points in the vicinity
of the mountains. This additional procedure slows
down - the calculations with advanced computers de-
signed for processing arrays of data simultaneously.

Although the sigma-system, a modified version of the
isobaric coordinate, is not free from shortcomings, as
will be discussed later, the same idea of transforming
the earth’s surface to a coordinate surface is applicable
to the height and potential temperature coordinate
systems as well.

In deriving prediction schemes using different vertical
coordinates, we find it convenient to introduce a general
system that utilizes any well defined variable as a
vertical coordinate. The idea of adopting a generalized
vertical coordinate was stimulated by Starr (1945),
who used a material surface in the vertical to formulate
prediction equations. Since a Lagrangian coordinate
is employed in the vertical, while Eulerian coordinates
are chosen in the horizontal, Starr named the hybrid
system a quasi-Lagrangian coordinate system. The
generalized vertical coordinate discussed here need not
be a Lagrangian coordinate. Rather, this is considered
the transformation of a vertical coordinate into a
more convenient form.

Two additional factors not explicitly discussed in the
past are also examined in this review—derivation of
the total energy equations in various systems and
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formulation of lower boundary conditions i 1nc0rporatmg
the earth’s orography.

2. Basic atmospheric equations

We first summarize the basic atmospheric equations
for large-scale flows using Cartesian coordinates x, v,
and z directed eastward, northward, and upward.

The equation of horlzontal motion may be expressed
in the form?

av 1
—+fkXV=—-Vp+F 2.1)
dt P
where
- - a a
V=ui+vj, V=i1—+j—
dx dy (2.12)
da
d 4 J
—=—t-V - Vdu—
dt  at 9z

in which 1, j, and k denote unit vectors in -, -, and
z-coordinates, respectively; V horizontal del operator,
V horizontal velocity, % and v the x- and y-components
of V, w vertical velocity, d/d¢ total derivative, f
Coriolis parameter (=2Qsing), € angular velocity of
the earth’s rotation, ¢ geographical latitude, p density,
p pressure and F frictional force per unit mass.
For large-scale motions, the hydrostatic equation

ap
—= —p8,
0z

(2.2)

where g denotes the earth’s gravity, is a good approxi-
mation to the vertical equation of motion.
The mass continuity equation can be written as

d dow
—Inp4-V-V4+—=0 (2.3)
dt dz
* (o)
dp d(pw
V- (oY) =0. (2.3a)
ot 9z

The first law of thermodynamics may be expressed by

d Q
— Inf=— (2.4)
dat cpT :
where 6 is the potential temperature defined by
6=T(po/p)* (2.4a)

with k=R/c, and po=1013 mb, and T is temperature

given by the ideal gas law
p=pRT 2.5) -

2 A list of symbols frequently used in the text appears in the
Appendix.
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in which R represents the specific gas constant. In
(2.4), cp stands for the specific heat at constant pressure
and Q the rate of heating/cooling per unit mass per unit
time. Here R and ¢, have the following relation

R=cp—c, (2.6)

where ¢, denotes the specific heat at constant volume.
Both ¢, and ¢, are assumed constant.

Another convenient form of the first law of thermo-
dynamics is derived from (2.4) and (2.5) as

dT 1dp
c————=( 2.7
dt  p dt
or
dpo 1 dp pQ
——— (2.8)
dt vRT dt ¢,T

where v =c,/c,.

The system of equations (2.1)~(2.5) constitutes the
basic set of dynamical principles for numerical weather
prediction. For prediction of large-scale weather phe-
nomena, it is important to take into account water
vapor in the atmosphere. We omit the prediction of the
water vapor field in this paper since it is not directly
connected with the choice of the wvertical coordinate
system. Thus, if the frictional term F and the heating
term Q can be expressed by the dependent variables
V, w, p, and p (or T), the system, together with proper
boundary conditions, forms a complete set.

Note that in (2.1) we introduce simplifications based
on the so-called shallowness approximation (Phillips,
1966; Hinkelmann, 1969) to neglect minor terms. We
also assume that the surface of constant apparent
gravity potential is approximated by a sphere so that
the geopotential depends only on the vertical coordinate
z and the earth’s gravity g is constant. We assume
throughout that the scale factors for the two horizontal
coordinates do not vary with height.

3. Generalized vertical coordinate system

Let the z-system be the coordinate system with
independent variables x, ¥, z, £, and the s-system the
generalized coordinate system with x, y, s, ¢, where s
represents the generalized coordinate

s=s(x,y,z,t) (31)

as a function of x, v, z, and {. We assume that the above
equation gives a single-valued monotonic relationship
between s and z, when x, v, and ¢ are held fixed. Thus,
by inverting (3.1) for z, it follows that

z=2(x,y,5,0). (3.2)

Any scalar function A4 in the four-dimensional space
may be expressed in either of two ways depending upon
whether z or s is chosen as a vertical coordinate. Thus,
the partial derivative of A with respect to ¢, where ¢
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can be x, ¥, or ¢, is generally different in the two systems
and the following relationship exists:

94 04 A 0z
dc /s oc/, 09z\dc/,
where the subscripts s and z indicate a particular

vertical coordinate to be held constant for partial
differentiation. Using the relationship

3.3)

04 /9s\0A
= <_)_1 (3'4)
9z dz/ ds
we can rewrite (3.3) as
a4 04 ds/ 03\ 94
(- o
dc /4 dc/, 0z\dc/,ds
If we choose ¢ for ¢, it follows that
o4 a4 d0s/0z\ 04
(-GG e
ot/ ot/, O9z\at/,ds
Similarly, choosing x and v for ¢, we obtain
ds a4
VA= V.4 "I“—(Vsz)(—"). (37)
9z as

We now transform the set of prediction equations
in the z-system into the s-system. The total derivative
d/dt in (2.1a) can be transformed to the s-system with
the aid of (3.6) and (3.7). The result is

d d Jdz ds 0
°. <_> +v.vs+[w_(_> _v.vsz]_ h
dt ot/ at/ s 0z ds

Also, by the definition of total derivative in the s-
system, we have

d 0 3]
_E<_> +V Vs+8

(3.8)

dt \at/, a—s, 39)
where § is the generalized vertical velocity
$=ds/dt (3.10)
which corresponds to w in the z-system
w=dz/dl. (3.11)

The relationship between § and w can be obtained by
comparing (3.8) and (3.9). Thus,

as 0z
S=—|:w—<—> -V Vsz:|.
0z ot/ s

(3.12)
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The horizontal equation of motion (2.1) can be
transformed to the s-system as

Y 1 1/8s ap
—+ kX V= ——vsp+-<—>(vsz)—~+F. (3.13)
dt P p as

a2

By making use of the hydrostatic equation (2.2) and
(3.4), we simplify the above as

A%

1
/—+ka V= —~Vs;b—gV3z+F. (3.14)
dt p

This is the equation of horizontal motion in the hydro-
static s-system.

To transform the mass continuity equation (2.3)
into the s-system, note that from (3.12) we have

9z 0z
’ZE)—:(_‘) +V VSZ_,"-S."—_- (315)
ot/ s as
Thus, :
dw Jw 8s
oz os 9z
s d sz 9V as )
=-—[—<—>+—-Vsz]+——- (3.16)
JdzLdt\ds as ds
Also, with the aid of (3.5), we can show that
Js av
SR L LA
dz as

Substitution of (3.16) and (3.17) into (2.3) yields the
mass continuity equation in the s-system:

d 0z as
— ln(p-—)-{-VS- V+—=0 (3.18)
dt as ds
which can be rewritten as
0/ 9z 0z a 0z
I:—-(p——)] +V3~(pv_>+—<p$‘—>=0. (3.19)
ai\ as/ as/ ds\ Js

The hydrostatic equation (2.2) in the s-system can
be expressed, using (3.4), as

9z 14dp

. (3.20)
as g 0Os

With the aid of the above equation, we may rewrite
(3.19) as

9 /0 a 4/ a
~<£> _}_vs.<vﬁ>+‘<s—p>=0. (3.21)
- ds\at/, ds/ 9ds\ ds

The hydrostatic equilibrium (2.2) or (3.20) is assumed
throughout the remainder of this article.
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Since the thermodynamic equation (2.7) or (2.8) is
written in terms of the total derivatives of dependent
variables, the thermodynamic equation in the s-system
has the same form as (2.7) or (2.8) except that the total
derivative in the s-system is defined by (3.9).

4, Upper and lower boundary conditions

In predicting the atmospheric flow with a numerical
model, we cannot handle a vertical coordinate which
literally extends to infinity. Thus, it is necessary to
set an upper boundary of the model and corresponding
boundary conditions as required by a solution to the
problem. The requirement may be different depending
on the specific vertical coordinate to be chosen and the
characteristics of prediction equations.

With regard to the kinematic condition, it is natural
and convenient to select the upper boundary as a
vertical coordinate surface s=sy=const. We then as-
sume that there- is no mass transport through this
surface. This is stated as

§=0 at s=sr=const. (4.1)

As a lower boundary condition of the atrmosphere,
we assume that there is no mass transport through the
earth’s surface, which is located at fixed altitude H
above the mean sea level 2=0. In the s-system, the
earth’s surface is expressed by

(4.2)

The value of s at z=H may vary with time and space.
As a direct consequence of the fact that air at the earth’s
surface may move only along the earth’s surface, we
get the lower boundary condition

s=sy=s(x,y,H,).

aé‘H

§= +V11'V5‘1[ at s=sy (43)

ot
where Vg denotes the horizontal velocity at z=H.
Now, by integrating the continuity equation (3.19)
with respect to s from sy to sz, exchanging the order
of integrations and differentiations (remembering that
sy is a function of x, y, and £) and considering the upper
and lower boundary conditions (4.1) and (4.3), we

obtain
d 77 /03 sT 03
— p(—)ds +V- / Vp(—«)ds =0. (4.4)
0ty \Os su as

When integrated horizontally, the above gives the
statement of mass conservation—the mass contained
between s¢ and sy is constant. In fact, the boundary
conditions are so chosen to conserve the total massin the
prediction model.

If the earth’s surface coincides with a constant
s-surface, then the lower boundary condition (4.3)
reduces to

§=0 at (4.5)

$=3m,
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which will be applied in transformed coordinate systems
discussed later.

5. Energy equations in the s-coordinate system

Scalar multiplication of (3.14) by V yields the kinetic
energy equation

ok ok 1
<——> +V-Viets—=—-V-Vyp—gV-V24-V-F, (5.1)
ot/ ds o

where

=1V.V=1(u241?) (5.1a)

is the horizontal kinetic energy per unit mass.

Multiplying (5.1) and (3.19) by pdz/ds and £,
respectively, and adding the resulting two equations,
we obtain

d 0z 0 dz
e (2o
dt\  as as as as

9z 0z 0z
=——V-V,p—go—V-Vz+p—V-F. (5.2)
as ds as

Multiplying (2.7) by pdz/ds, expanding dT/dt and
dp/dt and using the continuity equation (3.19), we find

d 03 0% a 0z
[“‘(%Tp——ﬂ +V,- (cpTVp—>+——<CpT8'p——>
at ds/ dg as as os

dz[ /0p dp] Oz
_—AK_V) +V~vsp+s—]=p“Q. (3.3)
asL\ot /, as as

Adding (5.2) and (3.3), it follows that

a 0z
o]
at asdi s

dz a 0z
+V,- l:(k +CpT) VP_] +—|:(k +CpT)SP—jl
as as

s
dz/ap
-G
Multiplying the hydrostatic equation (3.20) by gzs
and differentiating with respect to s, we have

dz dp 0 0z d/ dp

) (),

ds as ds ds as\ ds
Operating V, to gzVp(dz/ds) and substituting the
hydrostatic equation, we find

dz 0z ap
—gp—V - Viz=—V,- <ngp—>—zV,,- <V—> (5.6)
as ds as

dz 0p dz

—s——gp—V- Vsz+p—(Q+V F). (5.4)
ds ds as

(5.5)
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Using (5.5), (5.6) and the continuity equation (3.21)
multiplied by z, (5.4) is expressed by

alerenr]]+

a3 0z
—I———I:(k +c,T+g2) Sp——:l
ads as

dz
vs-[<k+cpr+gz>vp—]
as

9/ ap
a<z—>+p—(Q+V F. .7

This is the total energy equation in the hydrostatic
s-system.

Let us integrate (5.7) with respect to s from sy
to sy. By exchanging the order of integrations and
differentiations (remembering that sy is a function of
x, 9, and £) and applying the upper and lower boundary
conditions (4.1) and (4.3), we obtain

o [T a9z sr 92
—/ (k—i—cpT)p-—ds—I—V-/ (k+cp,T+g2)Vo—ds
ot J sy as ds

0z 631{ ajJ aj)
“en(es) G0 L LG
as/ 1 ot /s s=8T 0t/ s=sH
7 9z
+/ (Q+V-Fo—ds. (5.8)
sq as

We now evaluate the second and third terms on the
right of (5.8). Since sy =const., the second term becomes

)%
zZl — =Zr—,
Not/odomer 01

where z7 and pr denote height and pressure at s=sy.
Although sy is constant, zz can be a function of x, y,
and f in the s-system except in a height coordinate
where zr is constant. The value of dps/0¢ exists in the
s-system except in a pressure coordinate where dpy/dt
vanishes.

Observing that sy is a function of time in general,

we find

(5.9)

asy

g—ls=38H as 8H (91
6:11

6pH 0z
)
ot ds/ g 0t

(5.10)

The hydrostatic equation is used in the last step. Note
that dp/d¢ should vanish on a pressure surface when s
is replaced with p.
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By substituting (5.10), multiplied by H, and (5.9
into (5.8), we have

T

9 T 0z 0z
—-/ (k—i—c,,T)p—-ds-I—V-/ (k+c,T+gz)Vo—ds
atJ, i as og ds

opr O T Jz
=ZT———-H——+/ ©+V-Fp—ds. (5.11)
ot at sH as

This is the vertically integrated total energy equation
in the hydrostatic s-system.

a. Geomelrical height coordinate case

When height z is used as a vertical coordinate, the
upper and lower boundary conditions corresponding to
(4.1) and (4.3) are written, respectively, as

- w=0 at g=zp=const.

| } (5.12)
“ZU:’L(’)H:V][‘VIJ at g=H

remembering that the height of mountains does not
change with time.

The vertically integrated total energy equation in
the z-system is obtained by replacing s with z in (5.11):

a 27 F-2 i
5;/ (k—l—c,,T)pdz—i—V-/ (k+c,T+g2) Vpdz
J H

H

8pT 8pH 2T
=zT———H——+/ (Q+V-Flpdz. (5.13)
at at o .

By integrating p with respect to z from H to zr,
using the equation of state (2.5) and definition of R
by (2.6), we can show, as did Haurwitz (1941, p. 241),
that

27T 2T
/ oprdZ=/ (coT+g2)pdz+zrpr—Hpr. (5.14)
H .

v H

Differentiating the above with time, observing that zr
and H are independent of time and substituting the
resulting equation into (5.13), we see that

6 27T 27
— / (k—l—ch—i—gz)pdz—!-V-/ V(k+c,T+g2)pdz
at J H H

_ / T OV Bz, (5.15)

This is the vertically integrated total energy equation
in the hydrostatic z-system expressed in conservation
form. The quantities pk, c,pT, and gpz, respectively,
represent the kinetic, internal, and potential energy
per unit volume (van Mieghem, 1973).
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b. Pressure coordinate case

When pressure p is used as the vertical coordinate,
the upper and lower boundary conditions corresponding
to (4.1) and (4.3) are expressed, respectively, as

dp
it

W=

at p=pr= const.l
J- (5.16)

Opu
w=w11=—5;‘+VH‘VPH at p=pu

where pr and py denote pressure at the model top,
which is constant, and at the earth’s surface, which is
variable in time and space.

The vertically integrated total energy equation in
the p-system is obtained by replacing s with p in (5.11),
remembering that pr is a coordinate surface and using
the hydrostatic equation,

a PH pH
2 / (bte, T)dp+V- [ (k-+eyT+g2) Vip
0t J pr

T
aPH PH
——gH——+ / ©+V-F)dp. (5.17)
a Jor

Since H does not depend on time, the above equation
can be put in the conservation form

d (PH PH
~ f (k4-c,T+gH)dp+V- / (k+c,T+g2)Vdp
T

»T

= / ’ Q+V-Pydp. (5.18)

T

This is the vertically integrated total energy equation
in the p-system as given in Phillips (1973) for pr=0.

c. General case—other than z- and p-sysiems

As far as the vertically integrated total energy
equation, the z- and p-systems are unique in that the
upper and lower boundary conditions (4.1) and 4.3),
when properly expressed in p or z, are sufficient to
cast the energy equation into conservation law form.

In the potential temperature coordinate discussed
later, we need an additional upper boundary condition
to put the vertically integrated total energy equation
in conservation law form. We have two choices:

(5.19)
(5.20)

(a) dpr/0t=0 at §=6p=const.

(b) szr=const. for §=8z=const.

where 87 is a constant potential temperature of the
model top.

In the case of (a), the vertically integrated total
energy equation in the g-system can be expressed like
that of the p-system. In (b), we must calculate dpr/ 0t
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on f=0r and the vertically integrated total energy
equation becomes identical to that in the z-system. It
is inconsistent, in general, to assume conditions (a)
and (b) at the same time.

6. Prediction equations in pressure coordinates

We take pressure p as a vertical coordinate and define
the individual change of p as

w=dp/dt (6.1)
where, using (3.9), the total derivative becomes
d ] ]
—=<-> +V.-Vptw—. (6.2)
at \at/, ap

Since the first term on the right of (3.14) vanishes

on isobaric surfaces, the horizontal equation of motion
(3.14) reduces to

v _
_dt—_l_ka V=—gVy+F. (6.3)

After substituting p for s in (3.18) and (3.20), we
find that the first term of (3.18) becomes d In(—g~1)/dt
which is identically zero. Thus, the continuity equation
in the p-system takes a simple diagnostic form

duw
Vy V—=0. (6.4)
ap

By integrating the above equation with respect to p
and using the upper boundary condition in (5.16),
we obtain

w= -—-/ V- Vdp.

T

(6.5)

If we extend the integration to the earth’s surface
where the surface pressure is denoted by pu, we have

rH
wn=— / v,-Vip (6.6)

T

where wg denotes the value of w at the earth’s surface
g=H.

Elimination of p between the hydrostatic equation
(2.2) and the equation of state (2.5) yields

0z RT
g—=— 6.7
ap b4

By integrating the above with respect to p from the
surface pressure py at =H, we find

PH
gz=gH+R f Td(lnp). (6.8)
P
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The thermodynamic equation (2.4) in the p-system
may be expressed by

aT . wT 38 Q
(——) +V-V, T — —=—,
» g o

(6.9)
ot Cp

The surface pressure py is predicted from the surface
pressure tendency equation

aPH PH
——Z_VII'VPH_/ vadﬁ,

(6.10)
at P

which can be derived from the lower boundary condi-
tion in (5.16) and expression of wg by (6.6).

The initial conditions require the fields of V, 7, and
pr. Prognostic equations (6.3), (6.9), and (6.10) are
used to forecast V, T, and ppy. Diagnostic equations
(6.5) and (6.8) are used to calculate w and z.

Although the prediction equations in the pressure
coordinate system are simple in form, it is awkward
to handle the lower boundary condition since the surface
pressure can vary with time and space. This produces
the coding problem mentioned in the Introduction.
Phillips  (1957) introduced the so-called sigma-co-
ordinate system, which is a transformed pressure
coordinate mapping the earth’s surface onto a co-
ordinate surface. The sigma-coordinate system has
been adopted in many primitive equation models
(e.g., Holloway and Manabe, 1971). A variation of the
sigma-coordinate has been used in general circulation
models (e.g., Arakawa, 1972) and short-range prediction
models (e.g., Shuman and Hovermale, 1968).

We define the o-system as

o= (P"PT)/P*
P*=PH_PT

and (6.11)

where pp denotes the surface pressure at z=H and pr
is a constant pressure corresponding to the model top.
Thus, the model top is expressed by ¢ =0 and the earth’s
surface by o =1, where no special checking is required
to deal with the orography. If the model top is extended
to pr— 0, (6.11) is identical to the one proposed by
Phillips (1957).

Since V.o vanishes on a o-surface, by expanding
terms we find

1
V.,0'= ;—(V,?—O'VP*) = 0.

*

Note that the del operator to P, should be calculated
on the earth’s surface. Thus, the horizontal pressure
gradient force on g-surfaces is expressed, with the aid
of the equation of state (2.5), by

1 oRT
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Hence; we write the horizontal equation of motion
(3.14) as

oRT
—vVP,+F.

oPy+pr

dv
;;+kaV=—gV#f (6.12)

The hydrostatic equation (3.20) can be put in the
form
0z RTP,

g—=—— (6.13)
da oP *+PT
By integrating the above with respect to o from the
earth’s surface o=1, we obtain the equation of geo-
potential

gz=gH+RP, do. (6.14)

1
/a UP*+PT

Applying &p/dc=P, in (3.21), we obtain the
continuity equation in the o-system,

—4N(Pw+P—= (6.15)

remembering that P, is not a function of ¢.
Corresponding to (4.1) and (4.5), we choose as the
upper and lower boundary conditions, respectively :

=0 at o=0, p=pr
(6.16)
UIO at 0'=1,p=PH

By integrating (6.15) with respect to o and using the
upper boundary condition (6.16), we get

aP, v
U?_i_/ V,-(P*V)(io'+P*&=0- (6'17>
0

The extension of the limit of the integration (6.17)
to the earth’s surface, with the lower boundary condi-
tion in (6.16), gives

P,
ot

__ / 9, (P, V)do. (6.18)

By substituting the above equation back into (6.17),
we obtain .

1 re . g [
g= ——'—/ V,-(P*V)d0'+—/
R* 0 P* 0

From definition (6.11), the individual change of ¢ is

dp dP,
e
Py \dt dt

V,-(P,V)do. (6.19)

(6.20)
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The individual change of P, is given by the lower
boundary condition in (5.16) by replacing py with Py:

dt ot

BP*

—+Vy- VP, (6.21)

By applying (6.20), (6.21), (6.17), and (6.18), we
obtain the individual change of pressure,

dp
———O‘V” VP

(6.22)
dt

/ Vo (PyV)do.
0

The thermodynamic equation in the s-system may
be obtained from (2.7), with the aid of the equation
of state, as

iT  RT  dp Q

di c,,(P*a-i—pT) dt ¢y

in which dp/dt is already given by (6.22).

Prognostic equations (6.12), (6.23), and (6.18) are
used to predict the fields of V, T, and P,, respectively.
Diagnostic equations (6.19) and (6.14) calculate ¢ and 2.

The vertically integrated total energy equation in
the o-system can be derived from (5.11) by replacing
s with o. Since dpr/3t=0, we obtain the total energy
equation identical to (5.18) after changing the inte-
gration variable and the integration limits. Comparison
of the total energy equations in the p- and ¢-systems
is made by Haltiner (1971) by deriving the energy
equations separately in the two systems, but the lower
boundary condition was not considered rigorously in
his treatment, as pointed out by Shuman (1973).

We should mention one computational problem
related to the application of the o-system over steep-
slope mountains. As seen from (6.12), the horizontal
pressure gradient force is calculated as the sum of two
terms. In the case of pr being zero, one term is the
geopotential derivative on a sloping e-surface gV.z and
the other is the hydrostatic correction RTV(Ilnpg).
The hydrostatic component must cancel out between
the two terms to yield a proper evaluation of the
pressure gradient in the o-system. As pointed out by
Gary (1973), this process can introduce considerable

(6.23)

* error appearing not only near the mountains, but also

extending throughout the entire model atmosphere.
This difficulty has been recognized for some time and
various techniques have been suggested to overcome it.
Smagorinsky et al. (1967) and Kurihara (1968) calcu-
late the pressure gradient on pressure surfaces by
vertically interpolating data from the o-system to the
p-system. Corby et al. (1972) proposed a special finite-
difference scheme to evaluate the hydrostatic correction

~ term RTV(Inpy) so that the hydrostatic components

in the two terms of the pressure gradient in the o-system
cancel identically when there is no gradient of geo-
potential on isobaric surfaces and the temperature
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varies as logp. Gary (1973) and Phillips (1973) suggest
a scheme to remove the hydrostatic component from
each of the two terms gV,z and RTV(Inpy) by assuming
an average pressure profile in the neighborhood of the
grid point where the pressure gradient is calculated.
Although the above techniques offer considerable
improvement in idealized situations, the same degree
of improvement may not be attained in more realistic
situations in model calculations with coarse horizontal
and vertical resolutions. Further research is needed for
improved application of the o-system to numerical
prediction.

7. Prediction equations in the height coordinate
system

In the height coordinate system of Section 2, we
presented three time-dependent equations—(2.1), (2.3)
and (2.8)—for V, p and p, respectively. The two
diagnostic equations (2.2) and (2.5) are supposedly
for w and 7. However, it is not obvious how vertical
velocity w can be computed. In the hydrostatic system,
the calculations of dp/d¢ and dp/d¢t must satisfy (2.2).
Since dp/dt may be calculated from (2.3) and dp/d¢
from (2.8), where both equations contain w, the value
of w should be determined to satisfy the hydrostatic
constraint. This diagnostic procedure to determine w
was originally proposed by Richardson (1922) for the
atmosphere of infinite height. In the p- and o-systems,
the vertical motion field is determined kinematically
from the vertical profile of horizontal mass divergence,
whereas in the z-system the vertical distribution of
heating rate is required in addition to the vertical
distributions of pressure and horizontal mass divergence.
Such an equation of vertical motion is called the
Richardson equation.

Kasahara and Washington (1967) modified Richard-
son’s original formulation to the atmosphere of a finite
depth. One significant difference in the atmosphere
of a finite depth is the need for calculating the pressure
tendency dpr/dt at the model top z=zr. Although the
form of equation for the vertical motion and the top
pressure tendency appears complicated, there is no
difficulty in executing the calculations.

Later, Kasahara and Washington (1971) presented
a computing procedure to deal with the earth’s orog-
raphy by blocking the integration domain covered by
mountains. This requires examining in the computer
program the height of mountains and dealing with
lateral boundary conditions at the grid points in the
vicinity of mountains. One advantage of this procedure
is that the truncation error is confined mostly to the
mountains rather than extended throughout the model
atmosphere as in the case of the o-system.

The coding of the program is actually straight-
forward for a second-order finite-difference scheme,
but it may become complicated for higher-order, finite-
difference schemes and expensive in terms of additional
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computer time, particularly on advanced computers
designed to process arrays of data simultaneously. In
search of a more effective scheme to handle the earth’s
orography in the z-system to fully utilize future com-
puters, we propose here prediction equations in trans-
formed height coordinates in which the earth’s surface
and the top of the model atmosphere are both co-
ordinate surfaces.
For example, consider a coordinate Z defined by

ar—2%

ZT—H

(7.1)

F=

where zr denote a constant height of the model top.
Since #=0 at 2=z and Z=1 at z=H, the coordinate
(7.1) satisfies the requirement that both the earth’s
surface and the model top be coordinate surfaces. Thus,
(7.1) becomes similar to the sigma coordinate in
Section 6 with one important difference in (7.1)—that
at constant 2, # can be a function of x and y, but not of
time.

In this section, we present the set of prediction
equations in a more general transformed height co-
ordinate ¢, by assuming only that at constant height z, ¢
is independent of time and that both the model top and the
earth’s surface are constant § surfaces.

The horizontal equation of motion in this system is
obtained from (3.14) by replacing s with { and using

(2.5):

av
d_+ka V=—gViz—RTV;(lnp)+F,  (7.2)
It
where
d d 9
—= () +vmee 1.3
dt \ot/; ac
and
{=dg/dt. (7.4)
The hydrostatic equation (3.20) becomes
ap 0z
—= g (7.5)
a7 lile

The continuity equation is obtained from (3.21) by
replacing s with ¢{:

3 /0p ap\ 8/ 0
) ()2
ac\at /; ac/ o\ o¢

By integrating the above equation with respect to ¢
from some level { to the model top {r and applying the
upper boundary condition,

(7.6)

§=0 at ¢=fr, (7.7)
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we obtain the pressure tendency equation:

(ﬁ) o _op / vf-(v—p)z;, (7.8)
¢ ¢ o€

ot a o or
where .dpr/dt denotes the pressure tendency at the
model top.

By substituting the above into the definition of
dp/dt in the system, we find

dP 0 T
= i (7.9)
dt i)
where
{r ap
J=V. V;p—l—/ Ve- (V—)d{. (7.10)
¢ a¢

Now we discuss how to obtain the vertical velocity ¢
and the top pressure tendency dpr/d!.. By replacing s
with { in (3.18) and noting at constant height z that
. 82/8¢ is independent of time, we obtain the continuity
equation in the form

9z 1 dp dz\ 0/ 0z

e (20

I p dt a¢/ A\ ¢
Multiplying (2.8) by pd3/9¢ and substituting (7.11)
and (7.9) into the resulting equation, we get

(7.11)

dpr

‘ J
3/ 0z dz o 9z Q 0z
U ()0
a\ ac ac vp 3 T ¢
By integrating the above equation with respect to

¢ from the earth’s surface {x and applying the lower
boundary condition

¢=0 at {={m,

we obtain the expression for { in this system:
8pr
—+J

0z ¢ 9z ot 9 Q oz
[ O
o tu a¢ vp 3 T o

(7.12)

(7.13)

The top pressure tendency dpr/0t is determined so
that (7.14) satisfies the upper boundary condition (7.7)

and leads to
s J /02 Q /03 dz
[EG-S (5
OPT_ tn LYPNOS/ ¢, TNOC of
ot 1 (371,92 '
STgEs
Y Jen PNOC
By combining the equation of state (2.5) and the
hydrostatic equation (7.5), we determine temperature
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T from
4

g\ 9
R<———>—- Inp
dz/0¢

In this system, the prognostic variables are V, p,
and pp which are predicted by (7.2), (7.8), and (7.15).
The diagnostic variables { and T are computed from
(7.14) and (7.16).

We should comment here on the present forrmulation.
If we assume (7.1) as §, we get 9¢/9z=—1/(zr—H).
However, it is important to point out that the present
formulation is quite general for any variable { as long
as: 1) the relationship between ¢ and z is monotonic
for fixed horizontal coordinates, 2) d¢/dz is independent
of time, and 3) 9¢/dz is continuous and “smooth” in
the model.

The vertically integrated total energy equation in
the {-system becomes identical to (5.15) in the z-system
after rewriting the limits of integration by transforming
the integration variable z to ¢.

T=— (7.16)

8. Prediction equations in isentropic coordinates

Another vertical coordinate system especially con-
venient for description of adiabatic motions is the
potential temperature or isentropic coordinate. For
adiabatic motions, the potential temperature 6 of an
air parcel is conserved; thus, the pattern of isentropic
surfaces reflects the vertical structure of the adiabatic
atmosphere. The use of isentropic coordinates is not
limited to adiabatic motions. Here we present predic-
tion equations in the #-system with the heating term
included in the thermodynamic equation. As pointed
out in Section 5, the formulation of prediction equations
in isentropic coordinates is different from that in
isobaric and height coordinates because of the require-
ment of an additional upper boundary condition to
conserve total energy in the model.

Since V@ vanishes on isentropic surfaces, logarithmic
differentiation of (2.4a) yields

R
Ve(Ing) = Vg InT ——V4 Inp=0.

8.1)
Cp
Therefore, it follows that
1
——Voﬁ = CPV0T. (82)
P
Thus, by defining
M=c,T+gz (8.3)

which is called the Montgomery potential, after Mont-
gomery (1937) who first derived the expression, the
horizontal equation of motion in the §-system is reduced
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from. (3.14) to

av
?4- fkXV=—VoM+F (8.4)
t

where

d d
——< >+v Vo+0‘—
dt \ot

It is convenient to introduce the Exner function

()
T=Cp\ — ),
Po

after Eliassen and Kleinschmidt (1957), where k=R/c,

and po=1013 mb. Using this function, we express the
potential temperature (2.4a) by

8.3

0=c,T/m, (8.6)
the Montgomery potential (8.3) by
M =0r+gz, (8.7)
and the thermodynamic equation (2.4) by
6=d6/dt=Q/x. (8.8)

Combining logarithmic differentiation of (2.4a) and
the hydrostatic equation (2.2) and using (8.3) and (8.7),
we obtain

—_=T

a0

8.9)

This is a convenient form of the hydrostatic equation
in the 6-system. The Montgomery potential M is
obtained by integrating (8.9) with respect to € from the
surface potential temperature 8 at 2=H:

0
M=Muy+ / xdo, (8.10)
(34

and My denotes the Montgomery potential at the

earth’s surface:
My=06pmat-gH (8.11)_

where w5 denotes the Exner function at the earth’s
surface. The continuity equation in the f-system is
obtained from (3.21) by replacing s with 6:

d d d
0 (2
o\ a¢ a0/ a6\ 06

The upper and lower boundary conditions in the
-system corresponding to (4.1) and (4.3) are

(8.12)

6=0 at @=6r=const.

o0y (8.13)
0=—-+Vy-VO; at 0=0y
at
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where 67 denotes the potential temperature of the model
top. The upper boundary condition §=0 requires the
heating term to vanish. This is actually fairly well
fulfilled around the 150-mb level in the atmosphere.
The value of potential temperature at the earth’s
surface 0y is determined from the lower boundary
condition in (8.13) by substituting (8.8) for §:

a0

e Vi Vo (Q/ ) (8.14)
ot

By integrating (8.12) with respect to 6 from some
level § to the top 6 and using the upper boundary
condition in (8.13), we have

opr

G5 (RhGe) e

If we evaluate the above equation at =0, exchange
the integration and the differentiation noting that 6y
is a function of time and space, and use (5.10) applied
to the #-coordinate and the lower boundary condition
in (8.13), we obtain the surface pressure tendency
equation

a Ipr bt 3p
ﬁ=_—_+v-/ V—ids.
d¢ dt oy OO

As discussed in Section 5, we need an additional
upper boundary condition (5.19) or (5.20) in the
6-system. If we choose (5.19), we simply set dpr/dt=0
in (8.15) and (8.16).

On the other hand, if we select (5.20), zr is set as a
constant and we must calculate dpr/9¢ at §=0p. If
(8.10) is evaluated at §=6r, we have

(8.16)

or
Ormrt-gar= 0H7FH+gH+/ wdf (8.17)
774

where 77 denotes the value of = at §=~60r. Since zr and
H do not depend on time, by differentiating (8.17)
with time, exchanging the integration and the differ-
entiation noting that 8y is a function of time, and using
definition (8.5) for the Exner function, we obtain

Ormr 8pr Oumwy Opm

ap
= + / < >d0 (8.18)
pr Ot P Ot og P\O!

Substitution of (8.15) and (8.16) into (8.18) and use of
(8.8) for 6 yield the top pressure tendency

6 g or F
<—7r> v. / v aot / FD(@) —9<—P>]d0
Apr \p/m Jey 90 o LP p\ad

dt O O o7 g
BCECRE
P Frd P H 374 P

(8.19)
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D(0)=/ TV9‘<V‘—9£>d0.
) a0

Equation (8.19) corresponds to (2.16b) in Kasahara and
Washington (1967) for the z-system.

The initial conditions for this scheme require the
fields of V and p on isentropic surfaces and also the
surface potential temperature 6y and surface pressure
pa. The fields of = and M on isentropic surfaces are
obtained from (8.5) and (8.10). The field of  can be
computed from (8.8) with one of the upper boundary
conditions being #=0. We can then predict the fields
of V and 6y from (8.4) and (8.14), and the fields of p
and py from (8.15) and (8.16) with either 9pr/d{=0
or dpr/dt computed from (8.19).

Eliassen and Raustein (1968, 1970) performed
numerical integrations of prediction equations in the
isentropic coordinate system with an additional upper
boundary condition, dpr/dt=0. They dealt with adi-
abatic motions so that their prediction equations are
identical to those in this section if f terms are set equal
to zero. They also described a finite-difference procedure
to deal with the lower boundary condition on a flat
earth. ‘Shapiro (1973) recently performed numerical
integrations of prediction equations similar to those of
Eliassen and Raustein using 20 isentropic layers to sim-
ulate frontogenesis. Eliassen and Rekustad (1971) ap-
plied isentropic prediction equations for the study of
lee waves. In their model, the earth’s orography was
included, but the ground surface was assumed to
coincide with an isentropic surface, thereby simplifying
treatment of the earth’s orography.

The isentropic coordinate system has computational
disadvantages similar to those of the pressure coordinate
system in the vicinity of the mountains. Since the
surface potential temperature varies in space and time
at the earth’s surface, the lower boundary conditions
are cumbersome to code. This difficulty may be avoided
by introducing a new vertical coordinate 7:

where

(8.19a)

0r—0

r—0

n (8.20)

where 6 is a constant potential temperature at the
top and 6y denotes a variable potential temperature at
the earth’s surface. We assume that @ is a monotonic
increasing function with height and hence 8¢>65. We
then have n=1 at =60, and =0 at §=07.

Logarithmic differentiation of potential temperature
(2.4a) and the expression of potential temperature
(8.6) with p=pRT gives

1 1
V0= —<c,,V,,T——V,,p>. (8.21)

T P

By combining the above with V,6=%V8,, which can be
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obtained by applying V, to (8.20), it follows that

1
——V,p=—c,V,T+mnVos.
P

(8.22)

The horizontal equation of motion in this system is
reduced from (3.14) to

av
d~+ kX V=—V,M+myVoy+F,  (8.23)
I/t

where M denotes the Montgomery potential defined

by (8.3),
d 0 i}
= <—> +V Vn+'il_
dt \ot/, 99 .
and
n= (nbn—0) (8.24)
r— 0

in which 65 and ¢ are computed from (8.8).
The hydrostatic equation in this system is trans-
formed from (8.9) to

aM :
—_—= (GT—GH)W.
dn

(8.25)

By integrating the above with respect to n irom the
earth’s surface n=1, it follows that

1
M=M11+(19T—0H)/ wdn (8.26)
" n

where My denotes the surface value of M given by
(8.11). :

The continuity equation is obtained frorn (3.21)
by replacing s with »:

3 /9 a 9/ 9 ’
_<_P> +Vﬂ.<V_£>_|———<7']—P>=O. (8.27)
an\at/, an/  an\ an

By integrating the above with respect to 5 from the
top 7=0 and using the upper boundary condition 5=0
at n=0, we obtain

d 9 " a a
()22 [ e (Vo ). w20
at/t, a9t Jo dn a7

Extending the integration down to the earth’s surface
n=1 and using thé lower boundary condition =0, we
get the surface pressure tendency equation

0py Opr toap
A CRR i,
ot at CJo  On

(8.29)

As an additional upper boundary condition, we
select either dpr/0t as zero or zr as constant so that
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dpr/dt can be calculated by an equation similar to
(8.19) in the §-system.

9. Conclusions

We reviewed in this paper various prediction models
based on the primitive equations using different vertical
coordinate systems. In numerical models, we require
the conservation of mass and total energy in the
atmosphere of a finite depth. The formulation of
prediction equations used a generalized vertical co-
ordinate taking any well behaved, single-valued
monotonic function of geometrical height.

The conservation of total energy in the height and
pressure coordinate systems is achieved by the same
upper and lower boundary conditions satisfying the
conservation of mass. Other than these two systems,
the conservation of total energy in a general vertical
coordinate requires an additional upper boundary
condition that either the top pressure is independent of
time or the geopotential of the top coordinate surface
is independent of time. The former condition is simpler
to apply and the prediction equations become closer
to those in the pressure coordinate. The latter condition
requires the calculation of top pressure tendency
similar to that in the height coordinate. It is inconsistent
to assume both conditions simultaneously in general.
Other than the pressure and height systems, the isen-
tropic coordinate system is discussed in detail. Density
is another possible variable suitable to a vertical coor-
dinate and the formulation of the prediction equations
follows very closely that of the isentropic coordinate.

The pressure, height, and potential temperature
coordinate systems all have a common difficulty in
handling the earth’s orography. In p and 6, the variables
vary not only along the earth’s surface, but also with
time. Thus, the location of the earth’s surface relative
to the coordinate surfaces is constantly changing. Itis a
substantial coding problem in computer logic to test for
the location of the earth’s surface in the finite-difference
grid. Similar difficulty exists in identifying the earth’s
surface in the height coordinate system. However, the
location of the earth’s surface in the grid is invariant
with time in the height coordinate system and coding
of a special routine to handle the orography is simplified.

Considering the nature of advanced computers
designed for processing arrays of data simultaneously,
it is advantageous to apply transformed systems so
that the earth’s surface becomes a coordinate surface.
We have already pointed out an inherent difficulty
connected with the calculation of pressure gradient
force in the sigma-system. We must anticipate similar
difficulties in the transformed height and isentropic
systems. Thus, the reduction of truncation errors in the
evaluation of pressure gradient force on the transformed
coordinate systems remains a problem.

. Relative merits of various vertical coordinate systems
are not discussed in this review, since the question
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involves practical matters such as the vertical resolution
of the finite-difference scheme and the vertical structure
of weather phenomena to be described with those
systems.

The selection of the ‘“best” vertical coordinate
system, if it exists, is an important objective of future
research in numerical weather prediction. For this
purpose, it is desirable to write a computer code
flexible enough that various prediction schemes with
different vertical coordinate systems can be adopted
with minimal changes in the program.
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APPENDIX
List of Symbols
A any scalar function
c variable representing x, y, or ¢ for partial
differentiation
Cp specific heat at constant pressure
Cy specific heat at constant volume

o)
N
N>

defined by (8.19a)

frictional force per unit mass

Coriolis parameter

earth’s gravity

height of the earth’s surface from mean sea level

unit vectors in x-, y-, and z-coordinates

defined by (7.10)

horizontal kinetic energy per unit mass (5.1a)

(=c¢p,T+gz) Montgomery function

pressure

=pu—pr

standard pressure, 1013 mb

rate of heating per unit mass

(=¢p—c,) specific gas constant

generalized vertical coordinate

time

temperature

x- and y-components of V

horizontal velocity

vertical velocity

Cartesian coordinates directed eastward, north-
ward and upward

g@\\:—umo‘ \'T}
VW'

® %

(S

LB AR N T O O Y

=
=2
™

Greek symbols

n transformed isentropic coordinate
Y =Cp/Cs

K =R/c,

w

=dp/dt
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T Exner function (8.5)

p density

o =(p—pr)/Py

0 potential temperature

¢ transformed height coordinate

Other symbols

v horizontal del operator

d/dt  total derivative

() =d()/d

Subscripts (not defined above)

H  evaluated at the earth’s surface
T evaluated at the model top
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