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1. Infiltration
1a. Hydrologic soil horizons

are classifications of a soil profile depending on water content ans soil-water pres-
sure observed with depth. These are time-varying horizons that have much spatial
variability in accordance to topographic position and soil properties.

Groundwater Zone (phreatic zone) Saturated soil column and positive soil wa-
ter pressure. At the water table, pressure is equal to atmospheric. Water
table designated at depth z′0. If there is no ground-water flow, the pressure
is hydrostatic.

p(z) = γw(z
′ − z′o), z′ > z′0 (1)

Where p is gage pressure, z′ is the distance measured vertically downward.
The water talbe is at atmospheric pressure, the level at which water would
stand in a well.

Tension-saturated Zone (Capillary fringe) Saturated or nearly saturated soil with
negative matric pressure as a result of capillary forces. Water is under ten-
sion, pressure remains hydrostatic and the matric head is:

ψ = z′ − z′0 (2)

ψae is equal to the height of the capillary rise in the soil. Ranges from about
10mm for gravel to 1.5m for silt to several meters for clay.

Intermediate Zone Unsaturated zone through which percolation reaches the cap-
illary fringe and recharges the water table. Strong negative matric head.
Infiltration waves allow the water content to exceed the field capacity.
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Root Zone (or Soil Moisture zone) Layer from which plant roots extract water
during transpiration. Water leaves through transpiration, evaporation, grav-
ity drainage

1b. Infiltration Process

A water-input event begins at time t = 0 and ends at time t = tw. We define:

Infiltration rate f(t) rate at which water enters the soil [LT−1].

Water Input rate w(t) rate at which water arrives at the surface due to rain,
snowmelt or irrigation [LT−1].

Infiltration Capacity f∗(t) maximum rate at which infiltration can occur (changes
in time) [LT−1].

Depth of ponding H(t) depth of water standing on the surface. One can have:

• No ponding f(t) = w(t), or supply controlled situation

• Ponding, water input exceeds infiltration capacity f(t) = f ∗ (t) ≤
w(t)

• Ponding because the water table has risen to or above the surface. In-
filtration is zero f(t) = 0

1c. Measurement

Infiltration measurements at a point can be taken via a single or double ring infil-
trometer simulating the ponding of water and infiltration into soil. It can also be
measured with dye tracing and visualization experiments in soil profile

Infiltration is by nature a complex phenomenon which is variable in space and
time. It is affected by many factors:

• Water input from rainfall, snowmelt, irrigation w(t) and ponding depth
H(t).

• Soil saturated hydraulic conductivity and its profile Kh ∗ (z).

• Antecedent soil water content and its profile θ(z).

• Soil surface topography and roughness (runoff-runon processes).

• Chemical characteristics of soil surface (hydrophobicity).
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Figure 1: Courtesy Enrique Vivoni
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• Physical and chemical properties of water.

• Soil freeze and thaw conditions.

1d. Richard’s Equation

We can write the continuity equation using Darcy Flux in terms of the hydraulic
conductivity and hydraulic diffusivity:

q = −Kh(θ)

[
1 +

∂ψ(θ)

∂z

]
(3)

= −Kh(θ)−Dh(θ)
dθ

dz
(4)

This equation is exactly the same (physically) as the original Darcy, but it
simplifies the following analytical solutions. Remember the original conservation
equation:

This equation is exactly the same (physically) as the original Darcy, but it
simplifies the following analytical solutions. Remember the original conservation
equation:

∂θ

∂t
= −∂q

∂z
(5)

(6)

We can now express this in terms of the Darcy Flux, to obtain the One Di-
mensional Richards Equation.

∂θ

∂t
= − ∂

∂z

[
−Kh(θ)−Dh(θ)

∂θ

∂z

]
(7)

1e. The Green-and-Ampt Model

Numerical solutions of the Richards Equation are computationally intensive and
require detailed soil data that are usually unavailable. The Green-and-Ampt model
applies Darcy’s Law and he principle of conservation of mass, the predictions
of this model have been successfully tested against numerical solutions of the
Richards Equation.
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Consider a block of soil homogeneous to an indefinite depth (porosity and
saturated hydraulic condictivity are invariant), no ET, water table, capillary fringe
or impermeable layer. Waer content prior to t=0 is θ0 < φ. We assume no vertical
tension gradient at the beginning so at t=0:

qz′(z, 0) = Kh(θ0) (8)

At t = 0, liquid water begins arriving at the surface at a rate w and continues
for tw.

Case 1: Water input rate less than saturated hydraulic conductivity w < Kh∗
Water enters faster than it is leaving, as θ increases, so does Kh and qz′ .
When the water content reaches θw at qz′ = w inflow = outflow. This pro-
cess happens successively in each layer producing a descending front with
θw above and θ0 below.
If w < Kh∗, f(t) = w, 0 < t ≤ tw
f(t) = 0, t ≥ tw

Case 2: Water-input rate greater than saturated hydraulic conductivity w > Kh∗
Initially the soil will behave as above, then θ will increase, raising Kh and
qz′ . When there is saturation, θ = φ above the front and θ = θ0 below. Pres-
sure force decreases as wetting descends approaching qz′ = Kh∗. There
is then ponding and water moves as overland flow or runoff. The instant
ponding occurs is called time of ponding (tp). Up to this moment, all the
rain that has fallen has infiltrated:

F (tp) = wtp (9)
= z′f (tp)(φ− θ0) (10)

solving for tp

tp =
z′f (tp)(φ− θ0)

w
(11)

to find z′f (tp) we use Darcy’s Law between the surface and depth z′f (tp)

q′z(0, tp) = f(tp) = w = Kh ∗ −Kh ∗
ψf − 0

z′f (tp)
(12)
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where ψf if the effective tension at the wetting front. The tension at the
surface is zero because it is saturated, and the hydraulic conductivity is at
its saturation value and infiltration is equal to rainfall. Because ψf < 0

z′f (tp) =
Kh ∗ |ψf |
w −Kh∗

(13)

so that

tp =
Kh ∗ |ψf |(φ− θ0)
w(w −Kh∗)

(14)

After ponding, infiltration continues as:

f(t) = a′z[z
′(t)H(t)] (15)

= Kh ∗ −Kh ∗
ψf +H(t)

z′f (t)
= f ∗ (t) (16)

where H(t) is the depth of ponding. We can assume that H(t) = 0 and
using F (tp) = z′f (tp)(φ− θ0), yield

f(t) = f ∗ (t) = Kh ∗
[
1 +
|ψf |(φ− θ0)

F (t)

]
(17)

which is the Green-and-Ampt equation for infiltrability as a function of the
total infiltration that has occurred.
Since f(t) = dF (t)/dt whe can solve for t for F (t) > F (tp) to get:

t =
F (t)− F (tp)

Kh∗
+

[
|φf |(φ− θ0)

Kh∗

]
ln

[
F (tp) + |ψf |(φ− θ0)
F (t) + |ψf |(φ− θ0)

]
(18)

To solve this equation we must choose a value of F (t) and solve for t. Note
that as time goes on f(t) becomes asymptotic to Kh∗ as observed in nature.
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