1. Hydrologic Statistics

Hydrologic processes evolve in space and time in a manner that is partly pre-
dictable , or deterministic, and partly random or stochastic process.This section
describes hydrologic data from pure random processes using statistical parame-
ters and functions. Consequently we will focus on the observations themselves
rather than on the physical processes which produced them. Statistics is a science
of description, not causality.

A random variable X is a variable described by a probability distribution, the
distribution specifies that chance that an observation x of the variable will fall in
a specified range of X. A set of observations 1, o, ..., x,, of the random variable
is called a sample that is drawn from a hypothetical infinite population possessing
constant statistical properties.

The probability of an event P(A) is the chance that it will occur when and
observations of the random variable is made. If a sample of n observations has
n4 values in the range of event A, then the relative frequency of A is na/n. As
the sample size increases, the relative frequency becomes a progressively better
estimate of the probability of the event.

P(A) = lim,ﬁoo% (1)

If the outcomes A, B, C... of an experiment are mutually exclusive

P(AorBorCor..)=P(A)+ P(B)+ P(C) + ... (2)

and the sum of the probabilities of all possible outcomes is unity. If the outcomes
of successive or separate trials are independent (the result of one doesn’t affect
outcomes of other trials:

P(AandBandCand...) = P(A) x P(B) x P(C) x ... 3)
See Example 1.

1a. Discrete Random Variables

If a random variable can take on only specific exact numerical values, it is called
a discrete random variable (days with rainfall greater than 25 mm). If a partic-



ular random variable can take on any numerical value within some interval, it is
called a continuous random variable (streamflow). We can convert continuous
time series into discrete.
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Figure 1: Discrete and Continuous Variables

The probability distribution for a discrete random variable X is the probability
that X takes on a particular value z;:

px(z;) = P(X = ;) 4)
px (z;) is the probability function.
> px(z) =1 5)
all X

The cumulative probability function (Px (z;)) is the probability that X takes on a
value less than or equal to z;.

Px(z;) = P(X < ;) = Z px(z;) (6)

allX<z;



The probability that X takes on values between x; and xy,

oy,
Plr; < X <uzy) = Z px(x;) (7
1b. Continuous Random Variables

The probability of occurrence of any particular exact value is zero. To define these
probabilities we define a cumulative distribution function of a continuous variable
X as

Fx(x) = P(X <) (8)

The relative probability that a continuous random variable X takes on a par-
ticular value x is expressed by the probability density function

) = X ©)

Fete) = [ xaldo (10)

The probability that X takes on a value between z = a and x = b is given by
Pz <X <b) = /b fx(z)dz = Fx(b) — Fx(a) (11)

| =1 (12)

The cdf is a complete specification of the statistical properties of a random
variable. There are many distributions commonly used for hydrologic variables
including uniform, normal, lognormal (hydraulic conductivity in porous media,
raindrop sizes in a sorm), exponential (interarrival time of storms), gumbel, gen-
eralized extreme value, generalized pareto

Statistics are numbers calculated from a sample which summarize its impor-
tant characteristics. A statistical parameter is the expected value E of some func-
tion of a random variable. Denote an arbitraty function of X as ¢(X) then the
expected value of ¥ (X) is



El(X)] = / () fx(@)de (13)

1c. Quantiles

One of the simples ways of describing the distribution of a random variable is
to give the value of several quantiles of the distribution. The ¢** quantile of the
variable X is the value x, that is larger than 100q percent of all values.

Fx(zq) = q (14)

The most commonly reported quantiles are the median x 59, the lower quartile
T .95 and the upper quartile = 75. The interval [z 25,7 75] is the interquartile range.
If we have a sample of N measured values of a random variable X, we must
first rank (sort) the values. then we estimate x, as x(i) where 7 indicates rank.
According to the Weibull plotting-position formula

o
N+1
We must interpolate to obtain x, for the desired ¢

q (15)

2. Design Storm

Precipitation pattern defined for use in the design of a hydrologic system. De-
sign storm serves as the system input to a rainfall-runoff model, like the rational
method for determining peak flow rates in storm sewers and highway culverts, or
to determine storm hyetographs to input into rainfall-runoff analysis for spillway
design in large reservoir projects.

2a. Design Precipitation Depth

1. For point precipitation analysis (as opposed to areal precipitation), the annual
maximum precipitation (depth or intensity) for a given time interval in a storm is
found by computing a series of running totals of rainfall depth for that time inter-
val starting at various points in the storm, then selecting the maximum value of
this series. Notice that as the time period increases, the average intensity sustained
by he storm decreases. This method is useful to compare how severe a particular
storm is, compared to other storms and give useful data for design of flow control



structures. We choose the annual maximum precipitation for a given duration, and
the process is repeated for several durations.

Time {min} |Rainfall {in) |30 min 1hr 2 hr
0
5 0.02
10 0.34
15 0.1
20 0.04
25 0.19
30 0.48 1.17
35 0.5 1.65
40 0.5 1.81
45 0.51 2.22
50 0.16 .34
55 0.31 48
60 0.66 .64 3.81
65 0.36 2.5 4.15
70 0.39 2.39 4.2
75 0.36 2.24 4.46
BO 0.54 2.62 4.96
BS 0.76 3.07 5.53
50 0.51 2.592 5.56
85 0.44 3 5.5
100 0.25 2.B6 5.25
105 0.25 2.75 4.99
110 0.22 2.43 5.05
115 0.15 1.82 4.69
120 0.09 1.4 4.32 B.13
125 0.09 1.05 4.05 8.2
130 0.12 0.52 3.78 7.98
135 0.03 0.7 3.45 7.91
140 0.01 0.49 2.92 7.88
145 0.02 0.36 2.1 7.71
150 0.01 0.28 1.6 7.24
Max depth 3.07 5.56 B.2
Max intensity 6.14 5.56 4.1

2. Then, we rank the values for each duration from highest to lowest and com-
pute the estimated quantile for all ranks.

3. Then we can interpolate to determine the depths associated with the return
periods of interest. Suppose that an extreme event is defined to have occurred if
a random variable X is greater than or equal to some level x7. The recurrence
interval T is the time between occurrences of X > xp. The return period is the
expected value of 7, or the average recurrence interval between events equalling
or exceeding a specified magnitude. The probability of P(X > z; may be related
to the return period

E(r)=T = - (16)

where p is the probability of X > z7. So the probability of occurrence of
an event in any observation is the inverse of its return period. For a 2, 5, 10 and
25 year rainfalls are read from the 50, 20, 10 and 4% exceedence probabilities
P(X >x)=1- Fx(z).



Example 4.6 from Dingman.

i. Extreme Value Distributions The plotting-position approach is not appropri-
ate for estimating return periods greater than the length of the record, so in this
cases more sophisticated statistical analysis may be required Since observations of
extreme events are located in the extreme tail of the probability distribution of all
observations from which they are drawn (the parent population) it is not surprising
that their probability distribution is different from that of the parent population.
There are three asymptotic forms of the distributions of extreme values, Type I,

Type II and Type I11.
N
F(z) = exp (— (1 —k ) ) 17)
o

Extreme Value Type I k=0. Used for storm rainfalls

The three cases are:

Extreme Value Type II k;0

Extreme Value Type III k;0. Used for drought flows applied to -x

The Extreme Value Type I (EVI) is (Storm rainfalls are most commonly mod-
eled by the extreme value type I distribution:

F(x) = exp (—exp (-m - “)) (18)

The parameters are o = 6"°s/7 and u = T — 0.5772c where s is the estimate
of the standard deviation and 7 is the estimate of the mean. If we define y = *—*
then,

F(x) = exp(—exp(—y)) (19)

v (i () o

The return period 7' is given by:

and



Flar) = ——— (22)

yr = —In <ln (%)) (23)

2b. Intensity Duration Frequency analysis

and

The most common approach to determine the rainfall event to be used in hydro-
logic design involves a relationship between intensity (or depth), duration and
frequency or return period. Hydrologists use standard intensity-duration-curves.
We follow a procedure very similar to that explained in the examples above to cre-
ate a curve with duration plotted on the horizontal axis, intensity on the vertical
axis and a series of curves, one for each return period. The average intensity is
expressed as ¢ = P/T,; where P is the rainfall depth and 7} is the duration.
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