1. Dupuit

For steady state 1D flow with recharge rate R_{I}

$$
\begin{equation*}
\frac{2 R_{I}}{K_{H}}+\frac{\partial^{2} h^{2}}{\partial x^{2}}=0 \tag{1}
\end{equation*}
$$

Integrating twice and using the boundary conditions $h=h_{0}$ at $x=0$ and $h=h_{2}$ at $x=x_{2}$ we get

$$
\begin{equation*}
h^{2}=\frac{-R_{I} x^{2}}{K_{h}}+\left[\frac{h_{2}^{2}-h_{0}^{2}}{x_{2}}+\frac{R_{I} x_{2}}{K_{h}}\right] x+h_{0}^{2} \tag{2}
\end{equation*}
$$

With this equation we can calculate the height of the water table (h) at any point between $x=0$ and $x=x 2$.

