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Clausius Clapeyron Equation

The Clausius Clapeyron equation defines the vapor pressure of a gas that is in
equilibrium with a liquid or solid of the same material. The equation is general and in
atmospheric sciences it usually is used for water. Equilibrium in this case means the number of
molecules leaving the liquid (or solid) surface and moving into the vapor state is equal to the
number of gas molecules striking the liquid (or solid) surface and condensing from the vapor
state to the liquid (or solid) state.

This quiliebrium can be understood using the concept of maximum entropy and in
particular the the change in entropy of a system when a molecule changes state from vapor to
condensed state or visa versa.

The explanation given below largely follows from Kittel: Thermal Physics (1969).

Chemical potential
Chemical potential comes from the concept of two systems in diffusive contact such that
they can exchange constituents across a permeable boundary. The chemical potential, u, of a

system is defined by
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where g is the number of accessible states, o is the entropy, N is the number of molecules or
particles in the system and U is the total energy of the system. The chemical potential has units
of energy per molecule. It tells us how the entropy of a system changes when a molecule is
added to the system.

Phase equilibria

The thermodynamic conditions for the coexistence of two phases such as a liquid and a
gas are the conditions for the equilibrium of two systems that are in thermal, diffusive and
mechanical contact. These conditions are that

T=Tg w = g PI=DPg. (3)

where T is temperature, u is chemical potential, p is pressure, and the subscripts, / and g stand for
liquid and gas respectively.

For two gases in equilibrium, the temperature and pressure would be in equilibrium. Two
systems that can exchange energy and particles are in equilibrium when the temperatures,
pressures and the chemical potentials are equal. From the equality of the chemical potential of
the gas and liquid phases, we have

1 (P Ty) = w(posTy) (4)
and
w,(py +dp, T, + dT) = w,(p, + dp, T, + dT) (5)
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From the second equation we can say that
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where the ... refers to higher order terms. We subtract off (4) and keep the first order terms to
get
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We gather the dp and dT terms
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which is the differential equation of the vapor pressure equilibrium curve.
We will now use the Gibbs free energy, G, to determine these partial derivatives. The
Gibbs free energy is defined as

G=U-TS+pV (10)
The derivative of G is
dG = dU - TdS - SdT + pdV + Vdp (11)

The thermodynamic identity on conservation of energy that we have used previously generalized
to include the energy associated with adding molecules to the system is

dQ =TdS = dU - udN + pdV (12)
Substituting this equation for 7dS into the derivative of G yields
dG = dU - dU + udN - pdV - SdT + pdV + Vdp = udN - SdT + Vdp (13)
but the derivative of G is composed of the sum of the partial derivatives
dG = (ﬁ) dN + (ﬁ) dT + (ﬁ) dp (14)
oN)zr, T )y, ap -
By comparing the last 2 equations we see that
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oN)r, ' /y, ap -~

2 2/20/10



ATMO 551b Spring 2010

Now to relate G and u, we note that G increases linearly with N, which is the number of
molecules in the system. 7"and p do not change when two identical systems are put together but
G doubles when two identical systems are put together because G is proportional to N. So

G=NHTp) (16)
where F is a function of 7 and p and not N. So
G
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Therefore, = u (from (15)) and G is related to the chemical potential, u, via
G =N u(p,T) (18)

where N is the number of molecules in the system.
The two terms in the numerator of (9) are found using the thermodynamic relation,

oG
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where S is the entropy of the system. Since /N, the number of molecules in the system does not
depend on temperature, we can write as follows
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where s is the entropy per molecule.
The two terms in the denominator of (9) are found using the thermodynamic relation,

oG
(5)1\,1 =V (21)

where V is the volume occupied by the N molecules. Again, because the number of molecules in
the system does not depend on pressure, we can write

P
(@_M) _| N =l(§) _v_, (22)
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where v is the volume per molecule.
Combining (20) and (22) with (9), we get
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Note that s,—s; is the increase in entropy of the system when we transfer one molecule from the
liquid to the gas phase. v4-v; is the increase in the volume of the system when we transfer one
molecule from the liquid to the gas phase.

We know that the internal heat conversion in moving a molecule from the liquid state to
the vapor state is L,, which is the latent heat per molecule. The change in entropy is the change in
energy divided by temperature such that

(sg - s,) _AQ =% (24)

Clausius Clapeyron equation
We combine these to get the change in the equilibrium vapor pressure with temperature
as

@ = L (25)
dT TAv

The next step is to recognize that the volume taken up by the molecule in the gas phase is much
larger than the volume taken up by the molecule in the liquid phase.

A Ve (26)
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We can then use the microscopic form of the ideal gas law, P V=N kz T to get

v, = v _kT (27)
N p
which we substitute in to get
L L L
@ = m_ o Tm P m2 (28)
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Converting this to the macroscopic version
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where L, is the latent heat of vaporization in J/kg and R, is the gas constant for water in J/kg/K.
This is the form of the Clausius Clapeyron we usually see and use with e, equal to the saturation
vapor pressure of water.

de, elL,
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As noted previously, the temperature dependence of L, means that precise integration of (31)
produces more complicated forms of the Clausius Clapeyron equations than one might expect.
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there are a lot of different formulations that account for the temperature dependence. See
http://cires.colorado.edu/~voemel/vp.html for a summary of these.
A plot of the Clausius Clapeyron equations for water vapor is shown below.
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