Plane parallel non-scattering atmosphere

Solution to EvZ (8-58)

$$\mu \frac{dI}{d\tau} = I(\tau, \mu) - \psi(\tau, \mu) \tag{1}$$

where μ is cos θ . This is a linear first order differential equation of the form

$$\frac{dy}{dx} + P(x)y = q(x) \tag{2}$$

with solution

$$y = \frac{\int u(x)q(x)dx + C}{u(x)}$$
(3)

where $u(x) = \exp(\int P(x)dx)$. Rearranging EvZ's equation to match the form of (2) yields

$$\frac{dI}{d\tau} - \frac{1}{\mu}I(\tau,\mu) = -\frac{1}{\mu}\psi(\tau,\mu)$$
(1a)

Matching (1a) and (2) have $x = \tau$, y = I, $P(\tau) = -1/\mu$, $q(\tau) = -\psi/\mu$ and $u(\tau) = \exp(-\tau/\mu)$. The solution is

$$I(\tau,\mu) = \frac{\int_{\tau_0}^{\tau} -e^{-\eta/\mu} \frac{\psi}{\mu} d\eta + C}{e^{-\tau/\mu}} = \frac{1}{\mu} \int_{\tau}^{\tau_0} e^{(\tau-\eta)/\mu} \psi(\tau,\mu) d\eta + C e^{\tau/\mu}$$

which is the same as EvZ's solution (8-59):

$$I(\tau,\mu) = Ae^{\tau/\mu} + \frac{1}{\mu} \int_{\tau}^{\tau_0} \psi(\eta,\mu) e^{(\tau-\eta)/\mu} d\eta$$
(4)

Now how do we use this. τ is defined as 0 at the surface and τ_m at the top of the atmosphere.

Downward radiation: For downward radiation through the atmosphere, we ignore the 3K cosmic background so there is no source term outside the atmosphere so the $Ae^{\tau/\mu}$ term is 0.

$$I(\tau,\mu) = 0 + \frac{1}{\mu} \int_{\tau}^{\tau_m} \psi(\eta,\mu) e^{(\tau-\eta)/\mu} d\eta$$
(5)

This represents the summation of a downward source at every optical depth level, η , in the atmosphere starting at τ_m at the atmospheric top down to the level, τ . The emission from each level is then attenuated by an amount $\exp(-[\eta - \tau]/\mu)$.

Upward radiation: For radiation passing *upward* through the atmosphere, μ becomes $-\mu$. There is also a surface radiation term. The surface is defined at $\tau = 0$.

$$I(\tau,-\mu) = I(0,-\mu)e^{-\tau/\mu} + \frac{1}{\mu}\int_{0}^{\tau}\psi(\eta,-\mu)e^{-(\tau-\eta)/\mu}d\eta$$
(6)

If the observing point is above the atmosphere like a satellite,

$$I(\tau_{m},-\mu) = I(0,-\mu)e^{-\tau_{m}/\mu} + \frac{1}{\mu}\int_{0}^{\tau_{m}}\psi(\eta,-\mu)e^{-(\tau_{m}-\eta)/\mu}d\eta$$
(7)

Note error in EvZ eq. (8.62). $d\mu$ should be $d\eta$.