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Nonlinear solutions (following Rodgers Ch.5) 
 

We have derived the linear Gaussian variational approach equation 
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We can generalize this to include some range of nonlinear behavior, so-called moderately 
nonlinear behavior, by substituting F(x) for Kx.  So the linear form 
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becomes the nonlinear form 
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The solution to this equation that we want is the state vector, x, that maximizes the 
probability in (3).  The approach is to equate the derivative of (3) to zero and find the solution 
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We write 
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F x( )  which is still dy/dx.  Now because of the nonlinear behavior, K is 

evaluated at x and therefore depends on x which in the linear form did not.  So the optimum or 
maximum probability state, 
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This must be solved iteratively.   
If the problem is not too nonlinear, one can use Newtonian iteration to find the zero of a 

gradient of the cost function, (3).  For the general vector equation, g(x)=0, the iteration, along the 
lines of Newton’s method is 
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Taking (5) to be g(x)=0, the gradient of g is 
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Since g(x) is the derivative of the cost function (3), 
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function called the Hessian. The Hessian is expensive to calculate because it not only includes 
the Jacobean K which is the first derivative of the forward model but it also includes the second 
derivative of the forward model which can be very complicated and expensive to evaluate.   

The right hand term in (7) is this expensive term and in practice is dropped which is OK 
as long as the situation is not too nonlinear.  Under these conditions, the approximation is made 
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 Substituting (5) and (8) into (6) we obtain 
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which can be rewritten as a departure from xa rather than xi as follows  
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where it is convenient to start the iterations with xi = xa.  The first iteration in this case is 
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which looks very much like (1).   


