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Bayesian Retrievals 
 
Note:  This follows the discussion in Chapter 2 of Rogers (2000) 

As we have seen, the problem with the nadir viewing emission measurements is they do not 
contain sufficient information for “stand-alone” retrievals of vertical atmospheric structure 
without smoothing which increases accuracy but limits our ability to determine the vertical 
structure of the atmosphere. Optimum utilization of their information is achieved by combining 
them with other “apriori” information about the atmospheric state.  Examples of such apriori 
information are climatology and weather forecasts. 

Use of apriori information suggests a Bayesian approach or framework, we know something 
about the atmospheric state, x, before we make a set of measurements, y, and then refine our 
knowledge of x based on the measurements, y.  We need to define some probabilities. 

P(x) is the apriori pdf of the state, x. 
P(y) is the apriori pdf of the measurement, y. 
P(x,y) is the joint pdf of x and y meaning that P(x,y) dx dy is the probability that x lies in the 

interval (x, x+dx) and y lies in (y,y+dy) 
P(y|x) is the conditional pdf of y given x meaning that P(y|x) dy is the probability that y lies in 

(y, y+dy) when x has a given value 
P(x|y) is the conditional pdf of x given y meaning that P(x|y) dx is the probability that x lies in 

(x, x+dx) when measurement y has a given value 
 

 
 
Consider the joint probability, P(x,y), shown as the contours in the figure above.  P(x) is given by 
the integral of P(x,y) over all values of y. 

 

! 

P x( ) = P x,y( )dy
"#

#

$  (1) 
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Similarly 

 

! 

P y( ) = P x,y( )dx
"#

#

$  (2) 

The conditional probability, P(y|x=x1), is proportional to P(x,y) as a function of y for a given 
value of x = x1.  This is defined as the P(x,y) along a particular vertical line of x = x1.  Now 
P(y|x1) must be normalized such that  

 

! 

P y x
1( )dy

"#

#

$ =1 (3) 

To normalize, we divide P(x=x1,y) by the integral of P(x=x1,y) over all y. 

 

! 

P y x
1( ) =

P x
1
,y( )

P x
1
,y( )dy

"#

#

$
 (4) 

Now we substitute (1) into (4) 

 

! 

P y x
1( ) =

P x
1
,y( )

P x
1( )

 (5) 

We can do the same for P(x|y=y1) 

 

! 

P x y
1( ) =

P x,y
1( )

P y
1( )

 (6) 

We can combine (5) and (6) to get 

  

! 

P x y( )P y( ) = P y x( )P x( )  (7) 

For the present context where we are interested in the best estimate of the state, x, given 
measurements, y, we write (7) as 

 

! 

P x y( ) =
P y x( )P x( )

P y( )
 (8) 

In this form, we see that on the left side we have the posterior probability density of x given a 
particular set of measurements, y.  On the right side we have the pdf of the apriori knowledge of 
state, x, and the dependence of the measurements, y, on the state, x. The term, P(y), is usually just 
viewed as a normalization factor for P(x|y) such that  

 

! 

P x y( )dx
"#

#

$ =1 (9) 

With these we can update the apriori probability of the state, xa, based on the actual observations 
and form the refined posterior probability density function, P(x|y). 

Note that (8) tells us the probability of x but not x itself. 
 
Now consider a linear problem with Gaussian pdfs. 
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In the linear case, y = Kx where K is a matrix that represents dy/dx.  If this were all that there 
were to the situation, then knowing x and K, we would know y and the pdf, P(y|x), would simply 
be a delta function, d(y=Kx).  However, in a more realistic case, y = Kx + ε where ε is the set of 
measurement errors.  Therefore we don’t know y exactly if we know x because y is a bit blurry 
due to its random errors.   

We assume the y errors are Gaussian and generalize the Gaussian pdf for a scalar, y,  

 

! 

P y( ) =
1

" 2#
e
$
y$µ( )

2

2" 2  (10) 

to a vector of measurements, y, where µ is the mean of random variable, y, and σ is the standard 
deviation of y defined as <(y- µ)2>1/2. 

The natural log of the pdf is quite useful when working with Gaussian pdfs creating a linear 
relation between the conditional pdfs.  From (8) we can write 

 

! 

ln P x y( )[ ] = ln
P y x( )P x( )

P y( )

" 

# 
$ 
$ 

% 

& 
' 
' 

= ln P y x( )[ ] + ln P x( )[ ] ( ln P y( )[ ]  (ln 8) 

So with y and x now being measurement and state vectors respectively, we can write P(y|x) as  

 

! 

"2lnP y x( ) = y "Kx( )
T
S#
"1
y "Kx( ) + c

1
 (11) 

where c1 is some constant and we have assumed the errors in y have zero mean (generally not 
strictly true), such that the mean y is Kx. Note that Kx is the expected measurement if x is the 
state vector. The covariance of the measurement errors is Se.   

The error covariance is defined as follows.  Given a set of measurements, y1, y2, … yn, each 
with an error, ε1, ε2, … εn, then the covariance of the errors is shown in (12) for a set of 4 
measurements 
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 (12) 

where 

! 

"
1
"
2
represent the expected value of ε1ε2.  For a Gaussian pdf, a mean and covariance are 

all that are required to define the pdf.   
 
pdf of the apriori state 

Now we look at the pdf of the apriori estimate of the state, xa.  To keep things simple, we 
also assume a Gaussian distribution, an assumption that is generally less realistic than the 
measurement error.  The resulting pdf is given by 

 

! 

"2lnP x( ) = x " x
a( )

T

S
a

"1
x " x

a( ) + c
2
 (13) 

where Sa is the associated covariance matrix 

 

! 

S
a

= x " x
a( ) x " xa( )

T{ } (14) 
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Now we plug (11) and (13) into (ln 8) to get the posterior pdf, P(x|y) 

 

! 

"2lnP x y( ) = y "Kx( )
T
S#
"1
y "Kx( ) + x " xa( )

T
Sa
"1
x " xa( ) + c

3
 (15) 

Now we recognize that (15) is quadratic in x and must therefore be writeable as a Gaussian 
distribution. So we match it with a Gaussian solution 

 

! 

"2ln P x y( ) = x " ˆ x ( )
T ˆ S 

"1
x " ˆ x ( ) + c

4
 (16) 

where 

! 

ˆ x  is the optimum solution and 

! 

ˆ S  is the posterior covariance representing the Gaussian 
distribution of uncertainty in the optimum solution.  Equating the terms that are quadratic in x in 
(15) and (16): 

 

! 

x
T
K

T
S"
#1

Kx + x
T
S

a

#1
x = x

T ˆ S 
#1

x  (17) 

so that the inverse of the posterior covariance, 

! 

ˆ S 
"1, is 

 

! 

ˆ S 
"1

= K
T
S#
"1

K + S
a

"1 (18) 

Now we also equate the terms in (15) and (16) that are linear in xT 

 

! 

"Kx( )
T

S#
"1

y( ) + x
T
Sa

"1
"xa( ) = x

T ˆ S 
"1
" ˆ x ( )  (19) 

Substituting (18) into (19) yields  

 

! 

"x( )
T

K
T
S#
"1

y( ) + x
T
Sa

"1
"xa( ) = x

T
K

T
S#
"1

K + Sa

"1( ) " ˆ x ( )  (20) 

Now this must be true for any x and xT so 

 

! 

K
T
S"
#1

y + Sa

#1
xa = K

T
S"
#1

K + Sa

#1( ) ˆ x  (21) 

So 

 

! 

ˆ x = K
T
S"
#1

K + Sa

#1( )
#1

K
T
S"
#1

y + Sa

#1
xa( )  (22) 

(22) shows that the optimum state, 

! 

ˆ x , is a weighted average of the apriori guess and the 
measurements. 
We get the form of (22) that I have shown previously by isolating and manipulating the xa 
term… 

  

! 

K
T
S"
#1
K + S

a

#1( )
#1

S
a

#1
x
a

= K
T
S"
#1
K + S

a

#1( )
#1

S
a

#1
x
a

+ K
T
S"
#1
K + S

a

#1( )
#1

K
T
S"
#1
K #K

T
S"
#1
K( )xa   

 

! 

= K
T
S"
#1
K + S

a

#1( )
#1

K
T
S"
#1
K + S

a

#1( )xa + K
T
S"
#1
K + S

a

#1( )
#1

#K
T
S"
#1
K( )xa   

 

! 

= x
a

+ K
T
S"
#1
K + S

a

#1( )
#1

#K
T
S"
#1
K( )xa  (23) 

Plug (23) back into (22) to get 

 

! 

ˆ x = xa + K
T
S"
#1

K + Sa

#1( )
#1

K
T
S"
#1

y #Kxa( ) (24) 

which is indeed the form I showed previously.  As I said in class and in the Atmo seminar, (24) 
shows that the optimum posterior solution,

! 

ˆ x , for the atmospheric state given an apriori estimate 
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of the atmospheric state, xa, and its covariance, Sa, and a set of measurements, y, and its error 
covariance, Se, is the apriori guess plus a weighted version of the difference between the 
expected measurement, Kxa, and the actual measurement, y.   

Note that while (8) is true in general independent of the pdfs, (22) and (24) are true as long as 
the uncertainty in the apriori state estimate and measurements can be accurately described in 
terms of Gaussian pdfs.   

Note also that the unique solution, , depends on the apriori estimate, the measurements and 
their respective covariances.  Change the covariances and the optimum state changes.  Also note 
that it is assumed that there is not bias in the measurement errors or the apriori estimate.  This is 
not true in general.   
 
 
Consider the analogous situation with two estimates, x1 and x2, of the same variable, x.   
We want the best estimate of x, 

! 

ˆ x , given the two estimates.  To create this estimate, we need to 
know the uncertainty in each of the two estimates.  If we know the uncertainty in each, s1 and s 2, 
then we can weight the two estimates to create the best estimate.  We will take the best estimate 
to be the estimate with the smallest uncertainty, s.  The uncertainty or error in 

! 

ˆ x  is the expected 
value of (

! 

ˆ x  - xT)2 where xT is the true value of x.  

 

! 

ˆ x  = A x1 + (1-A) x2.  (25) 
where A is a weight between 0 and 1.  So the variance of the error in 

! 

ˆ x  is  

 

! 

ˆ x " x
T( )

2

= Ax
1
+ 1" A( )x

2
" x

T[ ]
2

 (26) 

 

! 

= Ax
1
" Ax

T
+ 1" A( )x2 " 1" A( )xT[ ]

2

= A x
1
" x

T( ) + 1" A( ) x2 " xT( )[ ]
2

 

 

! 

= A x
1
" x

T( ){ }
2

+ 1" A( ) x2 " xT( ){ }
2

+ A x
1
" x

T( ){ } 1" A( ) x2 " xT( ){ }[ ]  

 

! 

= A
2
x
1
" x

T( )
2

+ 1" A( )
2

x
2
" x

T( )
2

+ A 1" A( ) x1 " xT( ) x2 " xT( ) 

 

! 

"
ˆ x 

2 = A
2"

1

2 + 1# A( )
2

"
2

2 + A 1# A( ) x
1
# x

T( ) x
2
# x

T( )  (27) 

where we have used the definitions of s1 and s 2.  The next question is the cross term. If the errors 
in x1 and x2 are uncorrelated then the cross term is 0.  So let’s keep things simple and assume this 
to be the case where the two estimates come from two different measurement systems.  
However, if this is not the case then the cross term must be known.  This term is equivalent to the 
off diagonal terms in the covariance in (12). 

 

! 

"
ˆ x 

2 = A
2"

1

2 + 1# A( )
2

"
2

2 (28) 

We want the solution that minimizes 

! 

"
ˆ x 

2.  So we take the derivative of 

! 

"
ˆ x 

2 with respect to A and 
set it to 0. 

 

! 

d"
ˆ x 

2

dA
= 2A"

1

2
# 2 1# A( )" 2

2 = 0 (29) 

and the solution for A is  
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! 

A =
"
2

2

"
1

2 +"
2

2( )
 (30) 

so the optimum solution for x is 
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ˆ x =
"

2

2
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1

2 +"
2

2( )
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1
+

"
1

2

"
1

2 +"
2

2( )
x

2
 (31) 

Manipulate this a bit… 
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+
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! 

ˆ x =
"

1

#2

"
2

#2 +"
1

#2( )
x

1
+

"
2

#2

"
2

#2 +"
1

#2( )
x

2
 (32) 

Note the similarity of (32) with 

 

! 

ˆ x = K
T
S"
#1

K + Sa

#1( )
#1

K
T
S"
#1

y + Sa

#1
xa( )  (22) 

The variance of the error in x is  

 

! 

"
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"
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"
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! 

"
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"
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 (33) 

Take the inverse of (33) and note the similarity between it and (18). 

 

! 

"
ˆ x 

2( )
#1

= "
2

2( )
#1

+ "
1

2( )
#1

 (34) 

 

! 

ˆ S 
"1

= K
T
S#
"1

K + S
a

"1 (18) 

So the vector/matrix form is indeed a generalization of the scalar form (as it must be). 
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Data Assimilation 

So what is xa and where does it come from?  In numerical weather prediction (NWP) 
systems, xa is the short term weather forecast over the next forecast update cycle, typically 1 to 
12 hours.  As such, xa is a state estimate produced by a combination of atmospheric model and 
past observations.  This is a very powerful way to assimilate and utilize observations n the 
weather forecasting business.  The resulting updated state estimate, 

! 

ˆ x , is called the analysis or 
the analyzed state.  The analysis is used as the initial atmospheric state to start the next model 
forecast run.  The weather model needs an initial state to propagate forward in time. 
 
Using analyses to study climate 

These analyses are used as the best estimate of the atmospheric state to study climate.  In 
theory these analyses are the best possible state estimate, optimally using the available 
atmospheric model and observational information.  The problem, from a climate standpoint, is 
that the atmospheric models contain unknown errors including biases which are built right into 
the analyses via the xa term.  As such, it is problematic to use the analyses to evaluate climate 
model performance because they are based in part on the model.  The degree of any particular 
atmospheric state variable depends on the degree to which observations constrain that variable.  
The less the variable is constrained by the observations, the more the behavior of that variable as 
represented in the analysis is the result of the forecast model. 

It is this incestuous problem for determining climate, climate evolution and evaluating 
climate models that has driven us to make ATOMMS completely independent of atmospheric 
weather and climate models. 

 
 

 
 


