
Simulation and visualization of
simple leapfrog advection

scheme

ATMO 558
Term Project

Koichi Sakaguchi

Outline
1. Motivation

2. Method 2D
a) Equations

b) Model domain & grid setup

c) Initial condition

d) Integration

3. Result 2D

4. Method 3D

5. Result 3D

6. Conclusion

Motivation
•Looks cool

•Sounds smart

•Good summary of the dynamic core materials covered in
this course

•See how Matlab on personal computers (relatively old
macs) can handle 2D and 3D model integration &
visualization

 - A priori experience: 10 > hours on EOF from global NCEP reanalysis data

-The materials presented are from Chapter 11 (Model Task #3) and Chapter 13 (Model
Task #5) of Dr.Fovell’s class notes

-The visualization codes I wrote for this presentation are in Appendices for reference

Method - equations (2D)

!

"u

"t
= #

"uu

"x
#
1

$

"$ uw

"z
#Cpd%

"& '

"x

!

"w

"t
= #

"uw

"x
#
1

$

"$ ww

"z
#Cpd%

"& '

"z
+ g

% '

%

!

"#'

"t
= $

"u#'

"x
$
1

%

"% w# '

"z
$ w

d#

dz

!

"# '

"t
= $

c s
2

% cpd& 2
% &

"u

"x
+
"% & w

"z

'

(
)

*

+
,

•No moisture

•No adiabatic processes

•No diffusion/friction

•No Coriolis effect

•Base-state is in hydrostatic balance

•Normalized pressure is used for
pressure gradient force.

•Normalized pressure tendency eqn.
instead of the continuity equation.

•Flux form instead of advection form
(semi-anelastic atmosphere is
assumed)

- Everything as given in Dr.Fovell’s note
- Matlab indexing is the same as that of
Fortran
- The code has about 300 lines

Model domain & grid setup (2D)

•Arakawa C grid staggering

•Dimensions:

83 grid points in x direction (~33
km length)

42 grid points in z direction (~17
km height)

•Grid size:

 dx = dz = 400 m

•Boundary conditions:

Top & Bottom: Rigid, free-slip
(w=0) and zero-gradient to other
variables

 Lateral: cyclic

Arakawa C grid & leapfrog scheme

Example: u-momentum

!

u
i,k

n+1
= 2"t u

i,k

n#1 #
1

"x

u
i+1,k

n
+ u

i,k

n

2

$

%
&

'

(
)

2

#
u
i,k

n
+ u

i#1,k
n

2

$

%
&

'

(
)

2*

+

,
,

-

.

/
/

$

%

&
&

!

"
1

u,k
$z

w,k+1

w
i,k+1

n + w
i"1,k+1

n
)()

2

u
i,k+1

n + u
i,k

n()
2

" #
w,k

w
i,k1

n + w
i"1,k
n
)()

2

u
i,k

n + u
i,k"1
n()

2

%

&
'
'

(

)
*
*

!

"cpd# k
1

$x
% i,k

n "% i"1,k
n[]

&

' (

!

"u

"t
= #

"uu

"x
#
1

$

"$ uw

"z
#Cpd%

"& '

"x

uave,Auave,B

w & uave,C

uave,A uave,B

w & uave,D

w & uave,C w & uave,D

predict u at (i,k)

Initial condition (2D)
u,w = 0 (m/s)

θ’

p’

Thermal perturbation:
•Radius of 4000m
•max θ’ = 3 (K)

p’ field is adjusted to be
in hydrostatic balance
with θ’

Integration

• 2 sec time step
• Integrated for 1200 sec
• Mean variables are function of height only:

 = 300 (K) at all height
 = 965 (mb) at the surface

• Machine: 3 years old imac: G5 power PC 1.6 GHz
with 1.5 GB RAM

!

"

!

p

Results (2D)

 θ’ (K) w (m/s)

mean max mean max

Movie

Computational Mode &
 Robert-Asselin filter

Physical mode Computational
 mode

Leapfrog scheme produces two solutions:

Robert-Asselin filter to cancel out the computational mode

usual leapfrog scheme

Time-centered smoothing

Diffusion coefficient ε = 0.1

From Dr.Fovell’s note

Results (2D): Asselin filtered

 θ’ (K) w (m/s)

mean max mean max

Movie

Results (2D)

Model integration:
•Output file size:

83(x) x 42(z) x 600(t) x 4(variables) + other constants:
44~70MB (.mat file)

•Integration time:
10 minutes

Model visualization:
•Machine:

2yrs old macbook:Intel Core Duo 1.83GHz with 2GB RAM
(upgraded for this assignment)

•2D Movie making:
5 minutes
File size about 200MB

Method - equations (3D)

!

"u

"t
= #

"uu

"x
#
"uv

"y
#
1

$

"$ uw

"z
#Cpd%

"& '

"x

!

"w

"t
= #

"uw

"x
#
"vw

"y
#
1

$

"$ ww

"z
#Cpd%

"& '

"z
+ g

% '

%

!

"#'

"t
= $

"u#'

"x
$
"v#'

"y
$
1

%

"% w#'

"z
$ w

d#

dz

!

"# '

"t
= $

c s
2

% cpd& 2
% &

"u

"x
+ % &

"v

"y
+
"% & w

"z

'

(
)

*

+
,

!

"v

"t
= #

"uv

"x
#
"vv

"y
#
1

$

"$ vw

"z
#Cpd%

"& '

"y

•Y-momentum conservation
is added
•Y component is added on
each equation

Model domain & grid setup (3D)

s

•Arakawa C grid staggering

•Grid size:

 dx = dy = dz = 400 m

•Boundary conditions:

Top & Bottom: Rigid, free-slip
(w=0) and zero-gradient to other
variables

 Lateral: cyclic

Same as 2D

83 grids in x
83 grids in y
42 grids in z
> 600 timesteps

“out of memory”
error in matlab

63 grids in x
63 grids in y
32 grids in z
300 timesteps

~ 6hours for integration
~ 500 MB data size

43 grids in x
43 grids in y
22 grids in z
300 timesteps

~ 2hours for integration
~ 200 MB data size

Results (3D): velocity and θ’
No filterMovie

Movie

Results (3D): velocity and θ’
Robert-Asselin filterMovie

Movie

Results (3D): Dynamics

Velocity (u & v) and θ’ at 1200 m
height

Velocity (u & w) and θ’ at
perturbation center

Movie

Movie

Results (3D)

Model integration:
•Output file size:

43(x) x 43(y) x 32(z) x 300(t) = 17,750,400 x 4(variables) +
other constants: ~200 MB (.mat file)

•Integration time:

2 hours

Model visualization:
•3D Movie making:

- Full domain
>30 min for 3D quiver plot of one time slice
-7(x) x 7(y) x 22(z) box at the center of the whole model domain
5 minutes
File size about 170MB

1. Simple 2D leapfrog model is successfully simulated (thermal
circulation, waves)

2. Simple 3D leapfrog model was too much to integrate using
Matlab. The numerical weather model are written in Fortran with
good reasons

3. Robert-Asselin filter with ε = 0.1 successfully eliminated the
computational mode

4. 3D visualization is not necessarily more useful than 2D plots:
computing resource limit (domain size) & only one contour (e.g.,
isentropic surface)

Conclusion

Appendix A: Initialization plot (‘pcolor’)

pcolor(x*dx/1000,z*dz/1000,th(:,:,1))
axis image
shading interp
colorbar
title('Initial temperature perturbation (K)')
ylabel('Height (km)')
xlabel('Distance (km)')

Appendix B: 2D animation plot
(‘pcolor’, ‘quiver’, ‘getframe’)

[X,Z] = meshgrid(x,z); %create 2D x and z grid from position vector
X = X'; %without transposing pcolor and quiver plot won’t match up
Z = Z';
aviobj = avifile('uw_2d_filter.avi'); %create & open an .avi movie file
figure('position',[100 100 500 250]) %set the figure size

for i=1:nstep %start for loop to capture the frame of each time step
 pcolor(x,z,w(:,:,i)')
 shading interp
 caxis([-3 8]) %for w %set the color limit to avoid getting sick or too high by
 %caxis([-1 1]) %for p (mb) %watching the background color changing each frame
 %caxis([-1 3]) %for th
 colorbar
 hold on %ready to superimpose another plot
 quiver(X,Z,u(:,:,i),w(:,:,i),'b') %vector plot for velocity
 hold off
 title(['t = ' num2str(i*dt)])
 pause(0.01)
 drawnow;
 F(i) = getframe(gca); %record the image of this loop on a matrix called “F”
 aviobj = addframe(aviobj,F(i)); %and put the frame into the movie file
end

aviobj = close(aviobj); %close and save the movie file

Appendix C: 3D animation plot
(‘pcolor’, ‘quiver3’, ‘getframe’)

xmin = 18; xmax = 24;
ymin = 18; ymax = 24;
[X,Y,Z] = meshgrid(x(xmin:xmax),y(ymin:ymax),z);
aviobj = avifile('velocity_3d.avi');

close
for i=1:nstep
 quiver3(X*dx/1000,Y*dy/1000,Z*dz/1000,...
 u(xmin:xmax,ymin:ymax,:,i),v(xmin:xmax,ymin:ymax,:,i),...
 w(xmin:xmax,ymin:ymax,:,i),2.5)
 xlabel('x (km from the origin)')
 ylabel('y (km from the origin)')
 zlabel('z (km from the origin)')
 xlim([7 10])
 ylim([7 10])
 zlim([0 9])
 title(['Velocity field t = ' num2str(i*dt) ' (sec)'])
 drawnow
 F(i) = getframe(gcf);
 aviobj = addframe(aviobj,F(i));
end

aviobj = close(aviobj);

