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ABSTRACT

The exact solution of the nonhydrostatic pressure residual (total pressure perturbation minus hydrostatic
pressure perturbation) in Defant’s linear model is derived. The quasi-nonhydrostatic residual, introduced by
Pielke, and the pressure-correction term by Orlanski are compared with the exact residual for varying physical
situations. It is found that, within the linear framework, nonhydrostatic effects generally become relatively more
important when the environmental stability is near the neutral state and/or the associated horizontal length
scale is several kilometers or smaller. The residual components associated with buoyancy and horizontal mo-
mentum are the two important physical mechanisms contributing to the generation of nonhydrostatic effects.
In a near-neutral environment, a pressure residual must include the horizontal momentum nonhydrostatic
residual in order to approximate more accurately the nonhydrostatic effects, while in a sufficiently stable en-
vironment the total pressure tends to behave hydrostatically, although the nonhydrostatic effect which does
occur is associated with the nonhydrostatic buoyancy term.

The residual approach has the advantage in a numerical model in that it need only be applied in a subdomain
of a model where vertical accelerations are important, while the more economical hydrostatic equation for
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pressure can be used elsewhere.

1. Introduction

Defant’s linear model for local thermally-induced
circulations (Defant, 1951) is utilized to analyze the
magnitude of nonhydrostatic effects in a linear model
and to investigate the accuracy of several methods for
the potential incorporation of these effects into me-
soscale numerical models. Martin and Pielke (1983)
used the Defant model, together with a nonlinear an-
alogue, to investigate the adequacy of the hydrostatic
assumption for sea breeze circulations over a flat sur-
face. Among their results, they showed that in a linear
framework the hydrostatic assumption is accurate for
scales of heating of only a few kilometers, provided the
environment is stable and the subgrid-scale heat dif-
fusion is not strong. When nonlinear advections were
added, the scale of the response (i.e., the scale of the
sea breeze circulation) tends to become smaller than
the scale of the surface forcing. Thus, the scale-depen-
dence of the hydrostatic assumption derived from a
linear framework may not be valid in a nonlinear
system, ‘

It is of practical interest to know quantitatively how
the nonhydrostatic terms in a primitive equation model
would behave under varying physical conditions. A
detailed study of this type should, of course, include
advective effects, and perhaps also consider the situa-
tions when nonlinear forcing exists (as suggested in
Martin and Pielke, 1983; and Orlanski, 1981). The
Defant model is certainly insufficient for such a com-

@ 1088 Amoriran Matanealasianl Cu tne.

plete analysis. Pielke (1984) indicates some shortcom-
ings of the Defant model, namely that: 1) the subgrid-
scale turbulent exchange coefficients are independent
of time and space, 2) the advection of temperature and
velocity are ignored, 3) the environmental stability is
considered a constant, 4) the surface temperature per-
turbation is prescribed, and 5) no nonlinear interactions
are permitted among the dependent variables.

However, the Defant model does permit an evalu-
ation of several of the important forcings (in a linear
framework) in a thermally forced atmospheric system.
Since the use of the Defant model provides mathe-
matically exact solutions, such a linear analytic model
provides investigators with the ability to explore the
significance of many important processes without the
complication of computational errors. Besides, once
the linear processes are well understood, the important
nonlinear processes can be added later on and studied
in a focused and more clear manner.

There are several procedures to evaluate computa-
tionally nonhydrostatic effects in the atmosphere. For
example, the total pressure perturbation can be solved
directly from the ideal gas law in a nonhydrostatic,
fully compressible mode! (Kilemp and Wilhelmson,
1978; Cotton and Tripoli, 1978; Tapp and White, 1976;
etc.), or, it may be solved using a Poisson-type of equa-
tion in an anelastic model (Ogura and Charney, 1961;
Neumann and Mabhrer, 1971; Schlesinger, 1978; etc.).
For a mesoscale, incompressible model, Pielke (1972)
derived a residual method which utilizes a Poisson-
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type of equation, but for the nonhydrostatic residuals
only (the “residual” for any physical variable is defined
in this study by subtracting the value of that variable
when obtained assuming pressure varies hydrostatically
from the value when no hydrostatic assumption is
made). The computational advantage of such a residual
method over the complete Poisson equation approach
as reported in Pielke (1984), is that it can be evaluated
for only a subregion of a model, while in the remainder
of the domain, where the vertical accelerations are less,
the more economical hydrostatic equation for pressure
can be applied. As a result of the boundary condition
for the residual in the subdomain (i.e., the residual
equals zero), the residual method is easier to implement
computationally than the complete Poisson equation.
The residual method can also be applied at selected
periods during an integration (i.e., when nonhydrostatic
effects become large), rather than the entire integration
period. Orlanski (1981) suggested a simple modification
in hydrostatic model equations, in order to account to
some extent for nonhydrostatic effects (i.e., his quasi-
hydrostatic approximation).

In the present study, the Pielke (1972) and the Or-
lanski (1981) approaches will be applied in the Defant
model in order to examine the accuracy and applica-
bility of the residual solution techniques suggested in
Pielke (1972) and Orlanski (1981), as compared with
the exact solution.

The factors which are considered significant in af-
fecting both the relative importance of nonhydrostatic
effects and the applicability of the residual technique
(in a linear framework) are: horizontal length scale,
large scale stability, subgrid-scale heat diffusion,
strength of surface heating, and friction. Each of these
physical parameters will be discussed with respect to
its influence on the nonhydrostatic pressure. In Section
2, the exact solution of the nonhydrostatic residual will
first be derived, which will then be simplified such that
it can be applied using only information from a hy-
drostatic model. The solutions will then be tested under
different physical conditions in Section 3.

These tests of the relative magnitudes of nonhy-
drostatic effects are similar to those performed in Mar-
tin and Pielke (1983). However, this study is distinct
from that study in that we derive a mathematically
exact solution of the nonhydrostatic pressure residual,
while in that study the residual was obtained by merely
differencing the nonhydrostatic and hydrostatic solu-
tions of the Defant governing equations. Furthermore,
once the exact residual is derived, simplifications can
be made upon it to derive a prognostic method such
that the method can be of practical value in a mesoscale
numerical model.

In Section 4, the exact residual is compared with
three other residual approximations, two of which cor-
respond to the approaches introduced in Pielke (1972)
and Orlanski (1981). The important physical mecha-
nisms which contribute to the generation of nonhy-
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drostatic effects are examined through the comparisons.
Finally, the conclusion of this study is given in Sec-
tion 5.

2. The nonhydrostatic residuals

The governing equations of the two-dimensional
Defant model (as used in Pielke, 1984; and Martin and
Pielke, 1983) are:

A a2t o o (1)
- o @)
x%=a%-aog—xa,w 3
%§=—w%+K[£%+-g] )

where the prognostic variables (u, v, w, 8) are pertur-
bations from a basic state which is motionless, hydro-
static, and horizontally homogeneous with a constant
stability (basic state quantities are denoted by subscript
zero); o, and o, are the Rayleigh friction coefficients
of horizontal and vertical momentum, while X is the
eddy exchange coefficient for heat: these are considered
as constants in the specific experiments in this study.
The parameter A is used to trace the nonhydrostatic
effects. As evident in (3), A = 1 and A = O refer to
nonhydrostatic and to hydrostatic sets of equations,
respectively.

The procedure to derive the analytic solution of De-
fant’s model was discussed in detail in Pielke (1984)
and Martin (1981). For the purpose of this study, only
the final solution set is listed here:

u(x, z, 1) = wz)e™* coskx
v(x, z, ) = D(z)e™ coskx
w(x, z, 1) = w(z)e™ sinkx
p(x, z, £) = p(2)e’* sinkx
0(x, z, 1) = B(z)e"™ sinkx

=T, w=%, =Vl 6)

where k, L, are horizontal wavenumber and wave-
length, w, P are the frequency and period of the heating
function, and

wz)=— z-ZZ—r——E-(ae” + be bz)
¥(z) f 1 _rM (ae® + be %)

_iw+axzb2—a2
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As in Martin and Pielke (1983), the negative root is
used for a and the positive root for b; with
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As can be seen from above, when the hydrostatic
assumption is made, A = 0, thus 5° = 0, and a and b
are obtainéd from

-;—(S + 4er)'?

ay = i-\/a_i, bH = iVb_Hi (10)

where the subscript H of any quantity denotes hydro-
static, and the ay and by are obtained in the same
manner as ¢ and b.

Since all the prognostic variables are functions of a
and b, we know that they will have different solutions
if ay and by replace a and b. Thus, to obtain the exact
solution for the differences between the hydrostatic and
nonhydrostatic quantities, we need to consider this dif-
ference in all the prognostic variables in the governing
equations.

The residual (i.e., nonhydrostatic) pressure pertur-
bation (denoted as R where R = p — py) is obtained
as follows:

aH2 = bH2 —

Nlh

. ¥p 1-90u fdv o,du

CTake = (1) o= —— o = 4 - m - X2

axe 6x( ) ox® = apdx 0t apdx apdx
(1

a3 #*p 1 4 dw 8 60 azaw
Take - OF T T ez ot Goag 0z aodz
(12)
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Similarly for the hydrostatic system, we obtain
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Subtracting (13) from (11), and (14) from (12), and
adding the results yields the Poisson equation for the
pressure residual term:

1 38 9
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Using Defant’s analytic solutions, listed in Eq. (7), we
have, for example, the first right-hand side term above:

_Lod., )_iwrM

wp 0x At le )
. ,Q{aHe"”‘ + bye " ge* + be"”]
X sin 3 3 - 3
bH — ay bz —da
~ Similar expressions can be obtained for all other
terms on the right-hand side of Eq. (15). After rear-

rangements, the Poisson equation for the pressure re-
sidual can be rewritten as:

iwt
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(17)
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Equations (16) and (17) provide the exact solution
for the pressure residual term which represents the an-
alytic difference of pressure perturbation between hy-
drostatic and nonhydrostatic states in Defant’s model.
The formulation, however, has quantities belonging to
both states (the a, b, and ay, by) which need to be
evaluated simulfaneously. This means that the com-
plete residual can only be used for diagnostic purposes
if applied in a nonlinear numerical model since it would
be just as easy to use the complete anelastic equation
for p [i.e., the nonlinear analog to the sum of (11)
and (12)].

In order to obtain a practical method which calcu-
lates nonhydrostatic effects using only information
available from a hydrostatic model following Pielke
(1972), the equation for the quasi-nonhydrostatic re-
sidual (denoted as Ry) is obtained in the same manner
asin Eqs. (11)-(15), except that the difference between
hydrostatic and nonhydrostatic appears only in the
time derivative term and the vertical friction term.
Thus, we have

V2R,
1 dd8uy 1 00w o,0w

2 %)) dx ot

(£ 4)) ox ot

Using the incompressible continuity, the above
equation is reduced to

(18)

This is analogous to the form as applied in Pielke
(1972), and Martin and Pielke (1983) in their numerical
model evaluations.

Comparing (18) with (15), we see that (18) can be
obtained directly from (15) by neglecting the differences
between u, v, § and uy, vy, 04, respectively, and con-
sidering incompressibility. Using the incompressibility,
Eq. (18) becomes

L0 duy

1] ax ot

[ allH

V2Ry = .
" (o)) ox

(19)

It is then clear that (19) is of practical value because
only hydrostatic quantities are involved in the esti-
mation of the nonhydrostatic effects, all of which can
be obtained in a hydrostatic model. Also, comparing
(19) with (15), we see that the neglected terms in de-
riving (19) are the first four terms in (15), which involve
the immediate feedbacks associated with the buoyancy,
horizontal friction, and the Coriolis terms.

In terms of Defant’s analytic solutions, Eq. (19) is
written as

M
V2Ry = — e sinkx[C’'e®** + D'e™"7]  (20)
(e /4]
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ay .
C'=————(iwr+ro
el 2)

D' = Ha 5 (iwr + ro).
H

by? —

The solutions for Eqs. (16) and (20) are obtained

using the method of separation of variables. However,

it is straightforward to show that the solution for Ry

is exactly the solution for R except that ay and by

replace a and b. Written formally, the solution for R
is

M . . A B _
R= p e’ s1nkx|:a2 0 e’ + o bz

C D
+ ;H—z—_—k—z et + m e b”z:] 21)
with 4, B, C, D defined in Eq. (17).

In the next section, the pressure terms (p, py) and
the residual terms (R, R;;) will be analyzed as functions
of the horizontal length scale, large scale stability,
subgrid-scale heat diffusion, heating amplitude and
surface friction. The purpose of these analyses is to
determine how the nonhydrostatic pressure residual
varies with changing physical conditions within the
framework of Defant’s model. Furthermore, as stated
before, since the nonhydrostatic effects are evaluated
using Egs. (16)-and (17), rather than using A = 1 in
Defant’s model, it seems necessary to show the con-
sistency of the results obtained from the two indepen-
dent procedures. Unless otherwise mentioned, the val-
ues of the parameters used for the examples are those
listed in Table 1.

3. Analyses of the residuals

Figure 1 shows the maximum amplitude for the
pressure terms (p, py) and the residual terms (R, Ry)
as functions of horizontal length scale (L) plotted on
a logarithmic scale. (All the dependent variables in the
following section and figures are presented at their
maximum.) The range of scales is chosen from 200 m
to 50 km, which should cover most of the spatial scales

TABLE 1. Control values for the parameters.

-
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FIG. 1. Variations of the pressure perturbation and the residual
terms (p, py, and R, Ry; mb), and the absolute error term (|[R — Ryl/
|P}; %), as a function of the horizontal length scale (L,). Other physical
parameters are given in Table 1.

in which there is concern regarding the adequacy of
the hydrostatic assumption in a model. Since the pres-
sure perturbations are caused by surface heating in this
study, and since all perturbation quantities decrease
exponentially with height, the perturbations are eval-
uated near the surface (z = 15 m). All the pressure and
the residual terms are given in units of millibar.

As can be seen, when the length scale becomes large,
p becomes nearly constant. The difference between p
and py (ie., R) becomes negligible for larger scales.
This feature can be explained using Eq. (9): as L —
00, k— 0,and 2 — 0, r — 0; also s = s(w, k). Thus,
there is a decreasing dependence on the length scale as
it becomes large, resulting in a nearly constant p. Also,
it can be seen that there are virtually no differences
between a, b and ay, by, respectively, when the scale
is large. '

For smaller scales, k? becomes large and the situation
is more complicated. From Fig. 1, we see that for scales
less than about 1 km, the residuals are of the same
order of magnitude as the pressure terms. This indicates
that for such small scales, the nonhydrostatic effect is
significant, and that py is significantly overestimating
the true pressure perturbation. Pielke (1972, Fig. 19)
schematically illustrated how the hydrostatic pressure
overestimates the real pressure.

What is also of interest here is how Ry behaves as
compared with R. From Fig. 1 we see that for length
scales larger than about 1 km, there is essentially no
difference between R and Ry, while for the smaller
scales this difference becomes significant. The quantity
(R — Ry)/P|, hereafter called the absolute error and

FIG. 2. As in Fig. 1 except as a function of the stability
parameter (8). L, = 10 km.

expressed as a percentage, is also plotted. This measure
illustrates how much error is introduced as a fraction
of the true pressure perturbation, when Ry is used in-
stead of the complete nonhydrostatic pressure residual,
R. Figure 1 shows that this absolute error drops to es-
sentially zero for L > 1 km, but increases sharply when
L < 1 km. It is clear that under this near-neutral con-
dition (8 = 0.01°C km™") with a sarface heating of
10°C effective for one hour, the quasi-nonhydrostatic
residual method gives an accurate measure of the non-
hydrostatic effect for horizontal length scales as smail
as about 1 km. )
The dependence of p, py, R and Ry on the large-
scale stability is illustrated for L = 10 km (Fig. 2) and
L = 1 km (Fig. 3). The strength of the surface heating,

(]
10 T 1 - T

e e et e s . o o

e — 20%
o l R—Rul Yio%
3 /./' P T8 %
- — L L
10"="%3 2 3 20.
B (Ym)—s

FIG. 3. As in Fig. 2 with L, = 1 km.
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the heating period, and the strength of the eddy heat
diffusion are all the same as used to create Fig. 1. In
Fig. 2, we see that for L = 10 km, the difference between
p and py is negligible for all the chosen stabilities (3:
from 0.01 to 20°C km™"). The R4 and R, although
they differ somewhat relative to one another, are both
negligibly small compared with the pressure terms.
Thus, the absolute error term is very small for all the
chosen stabilities (the largest error is 1.5 percent, oc-
curring at 8 = 0.4°C km™'). The result shown here
indicates that for the scales normally considered in
mesoscale analyses (L = 10 km or larger), in which the
driving mechanism is surface heating and the upward
transport of this heating is primarily through the as-
sociated turbulent eddy processes, the situation is ap-
proximately hydrostatic and the residual method can
be used to accurately calculate the small nonhydrostatic
effects.

When the length scale is reduced to 1 km, however,
the residuals become relatively larger than for the pre-
vious case and, as seen in Fig. 3, Ry departs significantly
from R for a wide range of stabilities. From Fig. 3, we
see that for the less stable situations (3 < 0.1°C km™),
the residual is on the same order of magnitude as the
true pressure perturbation, while for the strongly stable
situations (8 = 0.1°C km™') Ry differs more signifi-
cantly from R. The physical mechanisms which con-
tribute to this discrepancy will be discussed in more
detail in the next section.

The dependence of the pressure and the residual
terms upon the strength of the eddy heat diffusion is
shown in Fig. 4. The horizontal length scale is 1 km,
and the other parameters are the same as in the above
cases. The range of the (constant) diffusion coefficient

10° . .

1073

FIG. 4. As in Fig. 1 except as a function of the
heat diffusion coefficient (K).
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FIG. 5. As in Fig. 1 except K = 1.0 (m®s™").

K is from 0.5 to 50 (m? s7!). It is seen in Fig. 4 that as
the strength of eddy heat diffusion increases, the pres-
sure perturbations increase. The hydrostatic pressure
perturbation consistently exceeds the real pressure per-
turbation. For this small horizontal scale (1 km), the
residual is the same order of magnitude as the pressure
terms. Here Ry gives a very accurate measure of the
nonhydrostatic effect due to the heat diffusion process,
except when the diffusion coefficient becomes very
large.

Figures 5 and 6 show the dependence of P, Py, R,
and Ry on the horizontal scale of heating for small X

10° . r
o T e
10t
L
€
102t {o0%
150%
| R-Ry I \,
=N o
1073 N .
(oX] [Ke] 0. 100.

Lx (km)—>

FIG. 6. As in Fig. 1 except K = 50 (m?s™!).
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(K =1 m?s ") and large K (K = 50 m?s™"), respectively.

In Fig. 5 we see that when the eddy heat diffusion is .

sufficiently small, Rj; gives an accurate measure of the
nonhydrostatic effects for scales as small as about 300
m. For very large diffusion (Fig. 6), the residual is the
same order of magnitude as the pressure for scales of
a few kilometers or less. The absolute error is rather
large for the small scales, and drops to essentially zero
at scales greater than about 3 km. The increase of the
nonhydrostatic effect with increasing strength of the
eddy heat diffusion was also illustrated in Martin and
Pielke (1983). :

The discrepancy between R and Ry for very large K
(Fig. 4) is found only for small horizontal scales. Figure
6 shows that for the same strength of heat diffusion (X
= 50 m? s7!), the difference between R and Ry is es-
sentially zero at scales larger than about 3 km. This
implies that when a strong energy input is coupled with
a small horizontal scale, there may be buoyancy oscil-
lations excited which cause departures of Ry from R.

- From Figs. 5 and 6 we see that either increasing the
horizontal scale or decreasing the strength of heat dif-
fusion will minimize the discrepancy between Ry
and R.

The strength of the surface heating is obviously im-
portant in producing nonhydrostatic effects. However,
this forcing appears only as a constant in Defant’s linear
model [i.e., see Eq. (7) for 6(z)], thus not allowing the
interactions between surface heating and mesoscale
circulations to take place. Martin and Pielke (1983)
discussed in more detail the effect of surface heating
using a nonlinear model.

Finally, the effect of the frictional term on pressure
and the residual terms is shown in Fig. 7. The physical

Tod . —

o't

mb

190%
150%

102

110%
5%

100.

Lx (km)—>

FIG. 7. As in Fig. | except with a smaller Rayleigh friction coef-
ficient (1074 s7Y).
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parameters are the same as in Fig. 1 except that the
(constant) frictional coefficient is reduced by one order
of magnitude. Comparing Fig. 7 with Fig. 1, we see -
that reducing the friction produces negligible effects
upon the pressure perturbations. The absolute error is
within 2 percent for scales larger than about 2 km.

4. Comparison of residual methodologies

For the purpose of comparing the approach dis-
cussed in Section 3 for the evaluation of the nonhy-
drostatic residual, two other different approximate re-
sidual formations (based on the Defant model) are an-
alyzed in this section. Also presented is a discussion of
the physical mechanisms which contribute to the dis-
crepancies between the approximate residuals as com-
pared with the exact residual.

Using Defant’s linear model, the Orlanski (1981)
pressure correction term is derived from a vertical in-
tegration of the local time derivative of the hydrostat-
ically-obtained vertical velocity. Written in an appro-
priate form for the comparisons here, the equation for
the Orlanski residual (hereafter denoted to as Rp) is

37 Re= (22)

It is seen from Egs. (15), (18), and (22) that R, can
be derived from (15) by making, in addition to the
simplifications made for obtaining Ry, two simplifi-
cations concerning the horizontal second-derivative of
the residual and the vertical friction term. This can be
clearly seen if we compare the formal solutions for Ry,
and Ry;

| - rM
R = — plwt o3
H p” e smkx(——sz - aHZ)
X[ty e )
aHZ — k2 sz _ k2

anz by —buz
+ az(aH2 s et + b2k e )] , (23)

X |:(iw)(i eV + L e"’”’)] . (24)
ay bu

Neglecting the friction term, we see that Ry can be
obtained directly from Ry by setting k to zero. Thus
when the horizontal scale of heating becomes large, in
the absence of friction (which as discussed in-the last
section is a relatively small term), Ry and Ry are
asymptotic to the same value.

Mathematically, the quantity k2 is associated with
the x-direction second-derivative of the residual, which

is derived from the horizontal equation of motion in
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which the nonhydrostatic effect is explicitly included.
That is, from Eq. (1) we have

& 1090
Fye (p—pu)=— ;;5‘6;(“ Uy)
f a o 0
S (u—ug) - = —(u—ug). 2
+a06x(u Ug) aoax(u ug). (25)

Therefore, setting k2 to zero is also equivalent to ne-
glecting the nonhydrostatic horizontal momentum re-
sidual (i.e., the horizontal velocity residual).

Since in an incompressible system the horizontal
velocity gradient is directly related to the generation
of vertical acceleration, it is thought necessary to further
examine the effect of neglecting k? (but retaining other
important terms). For this purpose, a new residual
(hereafter denoted as R,) is considered which is ob-
tained from the complete vertical equation of motion;
ie.,

LA Y7
9z " g 0z \ Ot ag 0z
g a
+- 2 L 9-0y. @
0=t 9)

Thus, there are four different residuals to be com-
pared: R, Ry, Ry, R;, obtained from Egs. (15), (18),
(22), and (26), respectively. Aside from the friction and
the Coriolis terms (which are found not essential to
our main conclusion), Ry and R, differ from R and
R, in that the former do not include the nonhydrostatic
buoyancy residual [i.e., the potential temperature re-
sidual term, as in Egs. (15) and (26)]. On the other
hand, R, and R, differ from R and Ry in that the
former neglect the nonhydrostatic horizontal momen-
tum residual, or, equivalently, they are based on the
assumption of an infinite horizontal length scale.

In order to have consistent numerical experiments
with those in the previous section, the following com-
putations are performed using, unless otherwise men-
tioned, the physical parameters listed in Table 1. An-
other set of experiments was also performed using the
heating period of 12 hours. Since the general patterns
of the residuals are similar using either 1 or 12 h as the
heating period, only the results of using 1 h are analyzed
here.

In Fig. 8, the four residuals are plotted as functions
of the horizontal length scale for three selected stabil-
ities. The magnitude of the total pressure perturbations
are, for the scale range between about 1 and 10 km,
on the order of 10~! mb. We first see that for a given
length scale, the nonhydrostatic residuals increase with
decreasing stability. For the stable situation (8 = 10°C
km™"), all the residuals are about two orders of mag-
nitude smaller than the total pressure perturbation;
while for the near-neutral situation (8 = 0.1°C km™),
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FIG. 8. The magnitudes (in mb) of the four residuals at z = 15 m:
R (solid), Ry (dashed), R, (dotted), and Ry (dash-dot), as functions
of the length scale and of three selected stabilities (3 = 0.1, 1, 10°C
km™!, as shown).

the residuals are comparable to the total pressure per-
turbation for the smaller length scales. For a given sta-
bility, the residuals are generally decreasing with in-
creasing length scale. The closer to the neutral state,
the larger the rate of decrease of the residuals with in-
creasing length scale. An exception to this is the non-
monotonic variation of R and R, in the more stable
categories which indicates that an optimal horizontal
scale exists in which vertical acceleration is maximized
as a result of contributions to convergence from op-
posite coasts (e.g., Abe and Yoshida, 1982). This rel-
ative maximum is not as significant in the 12-hour
period experiments.

With regard to the comparison among the residuals,
we see from Fig. 8 that in the stable situation, R,
matches with R, while Ry and Ry deviate from R. On
the other hand, in the near-neutral situation, Ry
matches with R, while Ry, and R, deviate from R. In
order to more clearly analyze the relative magnitudes
of the residuals, vertical profiles of the residuals are
plotted for a selected length scale (1 km) and for two
stabilities: 8 = 0.001°C km™! (Fig. 9), and 8 = 10°C
km™! (Fig. 10). The magnitudes of the corresponding
total pressure perturbations are also shown to indicate
the possible absolute errors which are introduced when
a certain residual is used.

From Fig. 9 we see that in the near-neutral situation,
Ry matches with R everywhere, while R, and R, are
both about two orders of magnitude larger than R.
Furthermore, both R, and Ry are about more than one
order of magnitude larger than the total pressure per-
turbation. It seems clear that the Rg-approach should
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FI1G. 9. Vertical profiles of the four residuals (notations are the
same as those in Fig. 8) and |p| for the near-neutral stability case (8
= 0.001°C km™). The vertical levels are at z = 0, 15, 50, 100, 500
and 1000 (m).

not be considered for the situations where the envi-
ronmerital stability is near neutral. On the other hand,
Ry provides an accurate measure of the nonhydrostatic
effect under the near-neutral condition.

From Fig. 10, we see that in the stable situation, R,
. matches with R while Ry and Ry deviate somewhat
from R, with Ry slightly better than Ry. In this case,
however, all the residuals are almost more than two
orders of magnitude smaller than the total pressure
perturbation. Clearly this result indicates that nonhy-
drostatic effects are negligible in the stable situation,
and therefore the discrepancies are of little practical
importance. .

As discussed previously, the difference betwéen the
‘exact residual and other residuals is related to the non-
hydrostatic buoyancy and horizontal momentum re-
siduals. That is, the horizontal momentum change and
the buoyancy associated with the surface heating are
the two most important physical mechanisms which
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contribute to the generation of nonhydrostatic effects,
for the situations considered in this study. The vertical
profiles of 8 and 6 (Fig. 11), and u and uy (Fig. 12),
are plotted for the same length scale (1 km) and the
same stabilities (8 = 0.001; 10°C km ™). From Fig. 11
we see that 8 is slightly larger than 85(0 — 84 < 0.1°C)
for the stable situation, while they match with each
other everywhere in the near-neutral situation. This
explains why Rp and Ry (in which the (f — 8) term
is neglected) deviate from R for the stable situation,
Physically, this implies that for a system being heated
from below, the more thermodynamically stable the
system, the larger the- fractional contribution of the
nonhydrostatic buoyancy to the residual that is gen-
erated within the system. In the absolute sense, how-
ever, the nonhydrostatic effect is negligible in this case
as compared with the total pressure perturbation.

From Fig. 12, we see that for the stable situation u
and ugy are almost equal, while for the near-neutral
situation they differ significantly from each other.
Again, this explains why Ry and R, [in which the (u
— uy) term is neglected] deviate significantly from R
in the near-neutral case, and Ry [which contains the
(u — uy) term] matches with R. Physically, this implies
that for an incompressible system, the closer the sys-
tem’s stability is toward neutral stratification, the
stronger is its velocity perturbation generated within
the system, and therefore the horizontal momentum
change plays a more important role in generating non-
hydrostatic effects (i.e., vertical acceleration) as com-
pared with the situation where there are only weak
horizontal velocity perturbations.

Finally, computations presented in Figs. 8-12 were
repeated for various 3 values between those of the very
stable case (8 = 10°C km™') and the almost neutral
case (8 = 0.001°C km™"). These results, which are not
shown, reflected intermediate features to those pre-
sented in those figures.

mb

FIG. 10. As in Fig. 9 except for 8 = 10°C km™".
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FiG. 11. Vertical profiles of 8 (solid) and 8;; (dashed) for the near-
neutral case (thick line) and the stable case (thin line).

5. Conclusion

Defant’s linear model is used to derive a mathe-
matically exact solution for the nonhydrostatic pressure
residual (total pressure perturbation minus hydrostatic
pressure perturbation). From the complete form of this
exact residual we can see that the thermally-induced
nonhydrostatic effects are caused, within the linear
framework, by physical processes such as horizontal
momentum variations, buoyancy effects, frictional ef-
fects, and Coriolis effects. Since the complete residual
requires both hydrostatic and nonhydrostatic quantities
to be evaluated simultancously, this residual can only
be used in a diagnostic analysis for numerical modeling
purposes. For the purposes of deriving a prognostic
approach to incorporate nonhydrostatic effects into one
or more subdomains of a mesoscale model, the com-
plete residual must be simplified so as to neglect those
terms which cannot be evaluated without a complete
nonhydrostatic model.

One type of simplification made to the exact residual
for the purpose of deriving a prognostic approach is to
neglect the nonhydrostatic buoyancy residual term.
Together with the incompressible continuity, this re-
sults in the residual approach introduced in Pielke
(1972). Aside from the horizontal friction and the Co-
riolis terms (which are found not to be critical to the
discussions of this study), the Pielke (1972) method
differs from the exact residual only in the buoyancy
residual term which, in the experiments performed in
this study, is relatively important only in the very ther-
mally stable environments. For such stable situations,
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the nonhydrostatic pressure perturbations are generally
about two orders of magnitude smaller than the total
pressure perturbation. Thus, the discrepancy between
the approximate residual and the exact residual is of
little practical importance.

For near-neutral stabilities, the Pielke (1972) residual
approach has been found to be able to provide accurate
approximations to the true pressure perturbation, in-
dicating that it is of practical value for evaluating non-
hydrostatic effects within a subdomain of a mesoscale
model, when the environment is in a near-neutral state.

Another type of simplification is to neglect the non-
hydrostatic horizontal momentum residual term.
Within Defant’s linear framework, this simplification
results in the residual approach introduced in Orlanski
(1981). It is found that this residual can be obtained
from the exact residual by merely making an assump-
tion that the involved horizontal length scale is very
large (i.e., a wavenumber approaching zero). This sim-
plification is equivalent to neglecting the nonhydro-
static velocity perturbation. In a near-neutral environ-
ment, it is found that the nonhydrostatic velocity (mo-
mentum) residual is relatively much more important
than in a stable environment. Neglecting this velocity
residual caused the Orlanski residual to overestimate
the nonhydrostatic pressure perturbation by about two
orders of magnitude.

Physically, the above results imply that for an in-
compressible system being heated from below, the ac-
tual pressure perturbation tends to depart from the hy-
drostatic pressure perturbation by an amount which
depends primarily on the system’s environmental
thermal stability and horizontal scale of heating. For
a sufficiently stable system, there are negligible non-
hydrostatic effects. On the other hand, when the sta-
bility is near-neutral, relatively stronger perturbations
will develop which tend to more closely connect the
vertical acceleration with the horizontal momentum
variations. In such situations, a residual approach must
include the nonhydrostatic momentum residual term,
such as the approach of Pielke (1972), in order to ac-
curately evaluate the nonhydrostatic effects. The resid-
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FIG. 12. Vertical profiles of u (solid) and u (dashed) for the near-
neutral case (thick line) and the stable case (thin line).



"96C—LLT “TOV 208 0213py “A0Y [ "MDNQ "[Spow
9[e250SU O1IRISOIPAY-UOU Y 1961 “AMYM A “d Pue “D "I ‘dde],
"€1L-069 ‘SE WS Souqy [ ‘Iedys pulm Julquie J|qeLrea

10J syusmILIadxa aaneredwo)) | Ued ULIOISISpUNY) Paje[os! ue
JO |opOW [ESLSWINU [BUOISUIWIP-29IY) V :§L61 d “¥ ‘105uIso[yos
dd z19
‘SS91d OIWAPRIY “SUIJIPOJY [DI130]0L0213]N 2]DISOSN H86] ‘——
‘dd /v ‘€1-Q0 T¥3
'OWRIN Y991 VVON ‘[opowr uonenbo saniwuud moqreys Aip
OTISE[OUR UR pue oNejsoIpiy e Jo uosuedwo)) :7/61 “V Y ‘pid
: “T8S-TLS ‘8€ ‘1S
‘souqgy “f ‘uonewnxoidde oneisorpAy-isenb oYy (1861 “1 ‘DISULEQ
‘0Sy—1€p ‘urder "00§ "I09RIN ‘OANOJ, ‘UOIIIPaL] 43YIDI,
Joorwny dwdg up 204g -aidydsowre dYl Ul UONOAUOD
[EULISY) JO [9POW [EILIOWINU Y :[96] ‘Adwiey) "D *f pue “ X ‘2indQ
‘TPS—TES ‘8T 1§ ‘SOWY “f "SUOTIBMOIID 2] 8IS pue
pue] oY) Jo Apnis [BONAI0A] V 1 L6] ‘TOIYRIN A PUB “f ‘UUBWININ
I8YI-TLYI ‘O "8
‘SOUQy “f "ulelid) Jef J13A0 Surjepowr 3zaa1q B3s ul uonduns
-se oneISOIpAY 2yl Jo Loenbape sy, (€861 ‘MPIJ 'V Y pue ‘——
"dd 9g ‘O[fIAsapIOpIEY)) ‘BIMIAIIA JO
ANSISATU() ‘S90USIDS [EIUSWUOIAUY JO *1d3(T ‘SISay) 'S’ "[opowt
[e2130[0I0319W J[BISOSIW B UL AOBINIOE [EOLSWINN] :[86] D “UIIB
"9601-0L01
‘SE “I0S SOWIY f 'SOIURUAD WLIOIS QATIOOAUOD [EUOISUIWIP
~391Y1 JO UONBINUIS Y, :§L61 UOSWRY[IM g ¥ pue “g [ ‘dwory
"TLY—ES9 “00g "I030N
"oty ‘4301040213 JO winipuaduio) ‘spum B30T 11§61 4 wueppq
TTST-€0ST ‘S
“10§ SOy [ “SIUAWLIAAXS [EOLISUING [RUOISUIWIP-321Y) MO[J
IB3YS Ul UOTI03AU0D SN{NWN) :§/61 ‘TodU L f "D pue “y "M Wonod

0T 'ON ‘T¥ “T0A

SHONHTIDS JDIY4dHdSOWLY HHL 40 TVNINOf

$80T-YLO1 ‘09 ‘UDADL 208 40219y “[ "9Z331q €S Y} UO
e[nsuruad € JO YIpIm 31 JO 1939 9L, 7861 ‘BPIYSOK "L PUE “S 9V

SIONTEIITYT

*sa1n8y oY) SunyeIp I0J 91qI0§ Apnf
pue ‘uoneredaid jduosnueur oY) ui Surpre 10j payueyl
e dquie] ZI'T pue AsJuny evIES ‘[9pow S Jugj
-3 Jo wexdoid 1ndwod peurduo 3yl Surpiaoad 10j
Uiy D I Jueyl ap “1oded oy jo syoadse Suid
-Ie[d pue Juraoxdwl ur Sjqen[eA 9I9m SIIMIIAL SNOW
-Auoue AQ SIUWWO)) BB ‘A PuUe H3qQnyds ‘M
"SI Y1M SUOISSNosIp [nydioy oy sreardde sioyine ay I,
‘uonerodio) eie jonuo) ayl Aq papraoid yoddns
[ented i g0 YIGAD NSO U U0 pue (ISN 21 4q
pauoddns ST YVON) YVON 1€ spew a1om Apnis siyj ut
pauuopad suoneindwo) "181H1H8-WLV PUB ZH0F0E8
WLV SIUBID UOBPUNO.] 9DUIDS [eUoneN Y} Jopun
pauLIojrad udaq Sey NIOM SIY T, “SIUIUISPI]MOUNIY

*(81) JO ULIOJ Jeaur[uou 3y} Jo uonnjos ay}
ut pardde aq pnom () = Hy uonipuos Arepunoq 3yl
urewopqns [9pout 9y} Jo saurepunoq syl 3y ‘pardde oq
ued uondwinsse d1)BISOIPAY dY] [Opol 3y} Jo Jopurewt
-1 9Y) UL I[IYM “03I18[ 918 SUOTIRID[IIOB [BOILIDA dIYM
[9pow 3[eJSOsSoW B UIyim suordarqns 1oj pandde aq
ued 11 1ey) 31N ay) sey 219y pajuasaid yoeoidde [en

0c1¢



