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ABSTRACT

In this study, a climate version of the Regional Atmospheric Modeling System (ClimRAMS) was used to
investigate the sensitivity of regional climate simulations to changes in vegetation distribution in the Great Plains
and Rocky Mountain regions of the United States. The evolution of vegetation phenology was assimilated into
the ClimRAMS in the form of estimates of the leaf area index (LAI) derived from the normalized difference
vegetation index (NDVI). Initially, two model integrations were made. In the first, the NDVI-derived vegetation
distribution was used, while the second integration used the model’s ‘‘default’’ description of vegetation. The
simulated near-surface climate was drastically altered by the introduction of NDVI-derived LAI, especially in
the growing season, with the run in which observed LAI was assimilated producing, in general, a wetter and
colder near-surface climate than the default run. A third model experiment was then carried out in which the
(comparatively more homogeneous) spatial distribution of the LAI remained the same as in the ‘‘default’’ run,
but the overall, domain-averaged magnitude of the LAI was reduced to be consistent with that of NDVI-derived
LAI. This third run simulated a drier and warmer near-surface climate compared to the default run. Taken
together, these results indicate that regional climates are indeed sensitive to seasonal changes in vegetation
phenology, and that they are especially sensitive to the land surface heterogeneity associated with vegetation
cover. The need to realistically represent both the spatial and temporal distribution of vegetation in regional
climate models is thus highlighted, and the value of assimilating remotely sensed measures of vegetation vigor
in Four-Dimensional Data Assimilation (4DDA) systems is demonstrated.

1. Introduction

Most land surfaces are covered by vegetation, and
there is general recognition of the importance of veg-
etation control on the exchange of energy, mass, and
momentum between the land surface and the atmo-
sphere. For example, Gash and Nobre (1997) reviewed
the climatological measurements from the Anglo-Bra-
zilian Amazonian Climate Observational Study (ABRA-
COS) and found that the difference in radiation and
energy balance between forests and clearings produces
higher air temperatures in the clearings, particularly in
the dry season. In areas of substantial deforestation,
higher sensible heat fluxes from the cleared forests pro-
duce deeper convective boundary layers, with differ-
ences in cloud cover being observed and mesoscale cir-
culations predicted. Based on low-level flight measure-
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ments, Segal (1989) showed that the atmospheric
boundary layer is shallower, cooler, moister, and less
turbulent over irrigated cropland than over adjacent bare
soil surfaces. Similarly, an observational study con-
ducted by Rabin et al. (1990) showed that convective
clouds are first formed over a harvested wheat field
surrounded by growing vegetation and are suppressed
immediately downstream of lakes and forests. In ad-
dition, Koster et al. (1986) indicated that the observed
growing season precipitation peak may be due, in part,
to the local recycling of water.

Climate model simulations have also shown signifi-
cant sensitivities to land surface characteristics. Charney
(1975) and Charney et al. (1977) demonstrated that such
models are sensitive to gross, global-scale changes in
specified surface albedo (a 5% increase in albedo led
to a precipitation reduction of 5%–20%). However,
changes in soil moisture, roughness length, and soil and
vegetation characteristics have also been shown to have
at least comparable effects (Shukla and Mintz 1982; Sud
and Smith 1985; Meehl and Washington 1988). Chase
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et al. (1996) examined the sensitivity of a general cir-
culation model (GCM) to global changes in leaf area
index (LAI) and found that decreasing LAI globally
decreased the surface latent heat flux and increased the
sensible heat flux during January and July. More re-
cently, Chase et al. (2000) showed that regional land-
scape changes in the Tropics alter climate, not only re-
gionally but also globally, by modifying the position
and intensity of the mid- and high-latitude polar jet
stream through teleconnections. Copeland et al. (1996)
used a regional climate version of the Regional At-
mospheric Modeling System (RAMS) to assess the im-
pact of a natural versus the current vegetation distri-
bution on the weather and climate. The resulting sim-
ulated changes in meteorological variables at screen
height were closely related to changes in vegetation pa-
rameters, specifically to the albedo, roughness length,
LAI, and fractional vegetation cover. Pielke et al. (1997)
demonstrated the significant role that land-use change
has in generating thunderstorms. Using the National
Center for Atmospheric Research (NCAR) Regional
Climate Model (RegCM), Bonan (1997) studied the ef-
fects of land-use change on the climate of the United
States. His results suggested that the replacement of the
natural vegetation by present-day vegetation cover over
the United States has caused a cooling of 1 K over the
eastern part of the country and a warming of 1 K over
the western part during spring. His simulations also
showed a warming of about 2 K during the summer
over large regions of the central United States.

The seasonal cycle and interannual variation of veg-
etation also exerts a significant control on surface–at-
mosphere interactions. Dirmeyer (1994), for instance,
showed that the inclusion of dormant vegetation during
the spring and early summer in a GCM run greatly re-
duces surface moisture fluxes by eliminating transpi-
ration from leaves, and prevents further depletion of
moisture in the root zone of soil, leading to soil-moisture
recovery during the subsequent summer. Xue (1997)
investigated the impact of land surface degradation in
the Sahel on seasonal variations of atmospheric and hy-
drological components over tropical North Africa using
a GCM. He found that desertification increases the sur-
face air temperature and reduces precipitation, runoff,
and soil moisture over the Sahel region during the sum-
mer months. This impact is not limited to the desertified
area but also propagates to the south and extends into
winter months. Another study, conducted by Xue et al.
(1996) using the Center for Ocean–Land–Atmosphere
Studies (COLA) GCM, found that the erroneous pre-
scription of crop vegetation phenology in the surface
model contributed greatly to the temperature biases of
summer simulation in the United States.

Bounoua et al. (2000) examined the sensitivity of a
coupled atmosphere–biosphere GCM to changes in veg-
etation density and found that increasing vegetation den-
sity globally caused both evapotranspiration and pre-
cipitation to increase. Their results showed a cooling of

about 1.8 K in northern latitudes during the growing
season and a slight warming during the winter, but with
a year-round cooling of 0.8 K in the Tropics. Much
recent work (e.g., Claussen 1994, 1998; Foley 1994;
Texier et al. 1997; Claussen et al. 1998; Pielke et al.
1999) has shown that the initial specification of the land
surface exerts a strong control on the subsequent at-
mospheric circulation in global and regional climate pre-
diction models. A previous study by one of the authors
using the coupled atmosphere and ecosystem model,
RAMS–CENTURY (Lu et al. 2001), also showed that
not only the initiation but also the variation in vegetation
phenology and its associated land surface heterogeneity
play a sizeable role in surface energy partitions and
influence predictions of surface temperature and pre-
cipitation.

Advances in satellite remote sensing technology have
provided unprecedented observations valuable for earth
science study. The remotely sensed normalized differ-
ence vegetation index (NDVI) yields information on the
spatial and temporal distribution of vegetation at re-
gional and global scales. Oleson and Bonan (2000) stud-
ied the effect of remotely sensed plant functional type
and LAI on the simulation of surface fluxes for boreal
forest using the NCAR land surface model and found
a substantial modeled response to spatial heterogeneity.
Oleson et al. (2000) evaluated land surface parameters
in the Biosphere–Atmosphere Transfer Scheme (BATS)
using data from the International Satellite Land Surface
Climatology Project Initiative 1 (ISLSCP-1) and Path-
finder Advanced Very High Resolution Radiometer
(AVHRR) data. They found that land cover heteroge-
neity within grid cells and, for a given land cover type,
leaf area index were much more spatially variable than
assumed in BATS in 1988 and 1993, particularly in
summer months. They suggested that improved param-
eterizations are needed in BATS to recognize the spatial
variability in LAI and roughness length, as well as in
their interannual variability. Whether remotely sensed
data can improve the simulation of weather and climate
is a question that can only be answered by incorporating
relevant data into models and performing coupled sim-
ulations.

The majority of previous studies have focused on
appraising impacts of assimilating observed vegetation
density into GCMs or stand-alone land surface models.
In the current study, we use Colorado State University’s
RAMS to examine the sensitivity of simulated regional
climate to multiyear satellite observations of vegetation
changes (NDVI). In its current form, RAMS land-sur-
face hydrological processes (e.g., evaporation and tran-
spiration), energy exchanges (e.g., latent heat and sen-
sible heat fluxes), momentum exchanges (e.g., rough-
ness length), and biophysical parameters (e.g., vegeta-
tion albedo, transmissivity, and stomatal conductance)
are parameterized to have a strong dependence on the
value of LAI. Consequently, inadequate and unrealistic
description of the vegetation distribution and its evo-
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TABLE 1. Model options used in the present study.

Category Options selected References

Basic equations Nonhydrostatic; compressible Tripoli and Cotton (1980)

Vertical coordinates Terrain-following sigma z Clark (1977), Tripoli and Cotton (1982)

Horizontal coordinates Oblique polar-stereographic projection

Grid stagger and structure Arakawa C grid, multiple nested Arakawa and Lamb (1977) grids (fixed)

Time differencing Hybrid

Large-scale precipitation Dump-bucket Cotton et al. (1995), Rhea (1978)

Convective parameterization Modified-Kuo Tremback (1990)

Radiation Mahrer/Pielke Mahrer and Pielke (1977)

Cloud Thompson Thompson (1993)

Surface layer Louis
Prognostic soil model
Vegetation parameterization

Louis (1979), Louis et al. (1982)
Tremback and Kessler (1985)
McCumber and Pielke (1981), Avissar

and Mahrer (1988), Lee (1992)

lution in the current RAMS land-surface models is con-
sidered a major deficiency. Using NDVI datasets to de-
rive LAI can provide a more realistic vegetation distri-
bution, which has the potential of improving the re-
gional climate model simulations. The goal of the
present study was to gain insight into the likely impact
of directly assimilating NDVI-derived-LAI specification
on the near-surface climate variables modeled by RAMS
at regional spatial scales and seasonal timescales.

The paper is organized as follows. The model de-
scription and grid configuration are described in section
2. In section 3, both the vegetation and meteorological
observational datasets used in this study are described,
including their interrelationship. The NDVI-to-LAI con-
version algorithm adopted for this study is also ex-
plained in this section. In section 4, the experimental
design and the impact of vegetation on the simulated
regional climate are examined. Discussion and conclu-
sions are given in section 5.

2. Model description and control run design

a. Climate version of RAMS

RAMS is a three-dimensional, nonhydrostatic, gen-
eral purpose atmospheric simulation modeling system
consisting of equations of motion, heat, moisture, and
mass continuity in a terrain-following coordinate system
(Pielke et al. 1992). The climate version of RAMS
(ClimRAMS), which is a substantial modification of the
original RAMS model (Liston and Pielke 2000), was
used for this study. The model setup and options are
very similar to those used by Lu et al. (2001) and are
summarized in Table 1.

A prognostic soil and vegetation model that interacts
with the modeled atmosphere provides the lower bound-
ary condition in RAMS. Each grid cell is divided into
three classes, which include open water, bare soil, and
different types of vegetated surfaces. For bare soil,
RAMS uses the multilayer soil model described by

Tremback and Kessler (1985). The moisture diffusivity,
hydrologic conductivity, and moisture potential are as
given by Clapp and Hornberger (1978). The thermal
properties of the soil are a function of the soil moisture
(Farouki 1986; Sepaskhah and Boersma 1979). The
moisture at the deepest soil level is held constant
through time, equal to the prescribed, initial value. The
temperature of the bottom soil layer varies, following
the deep-soil temperature model of Deardorff (1978).
For the vegetated surface, RAMS uses the ‘‘big leaf’’
approach, with a layer of vegetation overlying a shaded
soil (Avissar et al. 1985; Avissar and Mahrer 1988; Lee
1992) and 18 vegetation classifications, the parameters
of each being defined based on BATS (Dickinson et al.
1981, 1993, 1998). The moisture extracted by transpi-
ration from the soil is calculated by defining a vertical
root profile (Dickinson et al. 1986) and removing water
from the soil, depending on the fraction of roots in each
soil layer. The surface-layer fluxes of heat, momentum,
and water vapor are computed using the method of Louis
(1979) and Louis et al. (1982). Vegetation leaf area
index, fractional coverage, transmissivity, albedo, zero
plane displacement height, and roughness length are
needed as input to the land surface scheme in Clim-
RAMS in the form of regularly gridded space–time
fields. In the current study, any grid cell with an esti-
mated LAI value smaller than 0.1 units was treated as
bare soil.

b. Grid configuration and control run design

The model domain used in this study is shown in Fig.
1a. It comprises a coarse grid covering the entire con-
terminous United States at 200-km grid spacing and a
finer, nested grid covering Kansas, Nebraska, South Da-
kota, Wyoming, and Colorado at 50-km grid spacing.
The finer grid covers an area of 1500 km in the east–
west direction and 1300 km in the north–south direction.
The pole point for the oblique polar stereographic pro-
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FIG. 1. (a) The simulation domain and grid configuration used for
ClimRAMS in this study. The grid intervals used in the coarse- and
fine-grid domains were 200 and 50 km, respectively. (b) The topo-
graphic distribution in m in the fine-grid domain.

jection used to define the grid is 408N–1008W. There
are 20 vertical levels in the modeled atmosphere, with
a layer thickness of 119 m at the surface, stretching to
2000 m at the (23 km) top of the domain. The model
is driven by 6-hourly lateral boundary conditions de-
rived from National Centers for Environmental Predic-
tion (NCEP) atmospheric reanalysis products (Kalnay
et al. 1996). Lateral boundary condition nudging, which
includes horizontal wind speed, relative humidity, air
temperature, and geopotential height on pressure levels,
is performed on the two outer-boundary grid cells of
the coarse grid. The initial atmospheric fields are also
provided from the NCEP reanalysis. The time step for
the atmospheric model integrations is 2 min.

This domain has rather complex topographic features
because it covers parts of the Great Plains and the Rocky
Mountains (Fig. 1b). Heterogeneous soil types, based

on the U.S. Department of Agriculture (USDA) State
Soil Geographic Database (STATSGO), were used with-
in the model domain. (Miller and White 1998). The soil-
texture distribution for the finer grid is given in Fig. 2a.
The model has 10 soil layers with boundaries at 2.0,
1.65, 1.3, 0.95, 0.65, 0.45, 0.3, 0.2, 0.125, and 0.05 m
below the surface. The initial distribution of soil mois-
ture is generated by first defining spatially constant soil-
moisture content (i.e., 40% of the total water capacity)
over the domain, and then running the model for 1 yr.
The modeled soil-moisture distribution on the last day
of that 1-yr simulation was then used as the initial con-
dition for the next year’s simulation.

The model vegetation distribution is defined using the
International Geosphere–Biosphere Programme (IGBP)
land-cover classification. Associated with this complex
topography and soils, the domain also includes rather
diverse vegetation classes, including C3 and C4 grass-
land, various agricultural croplands, evergreen needle-
leaf trees, shrub land, and tundra. The distribution of
the dominant vegetation cover in each element of the
fine grid is shown in Fig. 2b. In fact, the inability to
represent spatial heterogeneity within a given vegetation
category is a significant deficiency of the standard
RAMS classification. There is, for instance, no differ-
ence in this classification between grassland growing in
northern Wyoming and that growing in southern Kansas,
and these two regions will, unrealistically, have the same
specification for LAI. When the LAI used in ClimRAMS
is derived from remotely sensed NDVI, grassland veg-
etation in Wyoming can, and likely will, have a different
LAI from that in Kansas because it is subject to different
site-specific factors, not least the local climate. Similar
differences will also apply to other vegetation classes.
As a result, using remotely sensed LAI will inevitably
introduce greater land-surface heterogeneity into the
simulated domain.

3. Observational datasets

a. Vegetation observations

The Pathfinder AVHRR 10-day composite NDVI
dataset for North America was used in this study. These
data are available at 8-km resolution for the period Jan-
uary 1982–December 1993. The high spatial variation
within these NDVI data emphasizes the significant dif-
ferences in vegetation phenology across North America.
For the purposes of this research, these Pathfinder NDVI
data were aggregated from their original 8 km 3 8 km
pixel scale to the 50 km 3 50 km fine-grid scale. An
example NDVI distribution derived in this way for Au-
gust 1989 is presented in Fig. 3a. The spatial pattern of
NDVI shows a clear gradient from the southeast corner
of the domain toward the northwest, which is consistent
with the spatial distributions of temperature and pre-
cipitation. The time dependence of the domain-averaged
NDVI for some of the most common vegetation classes
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FIG. 3. (a) The spatial distribution of NDVI across the fine grid for Aug 1989 after aggregation from the 8-km pixel scale to the 50-km
resolution. (b) Time series of monthly average NDVI for the period Jan 1982–Dec 1993 averaged over the domain of the fine grid for the
more common vegetation types present.

within the area of the fine grid is displayed in Fig. 3b.
The noticeable feature of the temporal profiles of NDVI
over this simulation domain is its seasonality, with
NDVI peaking during the months of June, July, and
August and reaching a minimum (of around 0.1) during
the winter. The domain-averaged NDVI time series for
different vegetation types (Fig. 3b) have different am-
plitude, growing season length, and the residue after
senescence, which can vary between years. The large
interannual NDVI variability of grasslands contrasts
with the limited variability of trees and crops, which is
in line with expectation. The rapid growth in spring and
early summer and prompt senescence in fall are also
striking features of the central United States NDVI rec-
ord.

b. Surface climate observations

Validating ClimRAMS and investigating the relation-
ships between the vegetation growth cycle and climate
requires a dataset of surface meteorological observa-
tions that has the spatial and temporal coverage for the
domain and time span of interest. The first-order Sum-
mary of the Day (SOD) meteorological station obser-
vational data from the National Climatic Data Center
(NCDC), which include observations of the daily pre-
cipitation, snowfall, snow depth, maximum screen-
height air temperature (Tmax), and minimum screen-
height air temperature (Tmin), are ideal for this purpose.
The locations of 3800 SOD stations distributed across
the United States are shown in Fig. 4a. Data from 1982
to 1996 were obtained and gridded onto the 50-km
ClimRAMS grid using an objective analysis scheme fol-
lowing Cressman (1959). The monthly mean maximum
and minimum screen-height air temperatures (Tmax and
Tmin) and precipitation, averaged over the domain of the
fine grid for the period 1982–96, are given in Fig. 4b.

All three variables demonstrated consistent seasonal cy-
cles. In this domain, the winter is dry and cold, while
the summer is warm and receives most of the annual
precipitation. Precipitation appears to have more inter-
annual variability than temperature. The year 1989 was
chosen as a near-average year for the control simulation
of the model.

c. Correlation between vegetation index and
atmospheric variables

The SOD and NDVI datasets exhibit some correla-
tion. To illustrate this, the monthly, domain-averaged
Tmax, Tmin, precipitation, and NDVI values were aver-
aged over June–July–August (JJA), that is, the peak
growing season in Northern Hemisphere midlatitudes.
The resulting time series are shown in Fig. 5. The fol-
lowing observations can be made:

1) The Tmin time series closely follows the Tmax time
series, but the year-to-year variations are approxi-
mately twice as large for Tmax.

2) The temperatures and precipitation time series ap-
pear to be negatively correlated.

3) The domain-averaged NDVI time series resembles
the domain-averaged precipitation time series, with
the driest year (1988) having the lowest NDVI value
and the wettest year (1993) having the highest.

4) The correlation coefficients between precipitation
and domain-averaged NDVI, grasslands, trees, and
crops are 0.65, 0.64, 0.42, and 0.76, respectively.

Thus, NDVI and rainfall in the central United States
are positively correlated, reflecting the fact that vege-
tation growth depends strongly on soil-moisture avail-
ability, which in turn depends on rainfall amount and
frequency. In part, this is also why the NDVI of grass-
land exhibits greater interannual variability than trees
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FIG. 4. (a) Locations of the stations in the NCDC Summary of the Day network, the data from
which were used in this study. (b) Monthly average SOD observations of screen-height maximum
and minimum air temperature and precipitation averaged over the domain of the fine grid for the
period of 1982–96.
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FIG. 5. Times series of climate variables and NDVI averaged over the domain of the fine grid
for the period 1982–93. JJA average values, selected to represent the values during the peak
growing season, are shown.

and crops: the deeper and more extensive rooting of
trees and the irrigation of many crops may well allow
them to have more consistent access to soil moisture
than grasslands. The fact that NDVI and precipitation
are significantly correlated argues for the use of realistic
vegetation growth models in climate simulations. Figure
5 (bottom) shows that natural grasslands have the small-
est value of NDVI, trees have the largest, and crops lie
between the two.

d. NDVI-to-LAI conversion algorithm

Several algorithms exist to derive LAI from NDVI
datasets (e.g., Sellers et al. 1996; Nemani et al. 1996).
The algorithm introduced by Sellers et al. (1996) was

applied in this study as follows. First, a lookup table
was created to relate the vegetation classes used in
RAMS to those used in the second Simple Biosphere
Model (SiB2) (Lu 1999; Lu et al. 2001), Then, the sim-
ple ratio SR was calculated, based on the relation SR
5 1 1 NDVI/1 2 NDVI. The fractional photosynthet-
ically active radiation (FPAR) is then given by

(SR 2 SR )(FPAR 2 FPAR )i,min max minFPAR 5
(SR 2 SR )i,max i,min

1 FPAR ,min

where FPARmax 5 0.950, FPARmin 5 0.001, FPARmax

and FPARmin are independent of vegetation type, SR i,max

is equal to the SR value corresponding to 98% of the
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FIG. 6. Summary of the temporal and spatial distributions of LAI used in the three ClimRAM runs [ASSM (the run with assimilation of
LAI derived from NDVI data), DEF (the run with the default specification of LAI for ClimRAMS), and SEN (the run in which the spatial
distribution of LAI follows that in the DEF run)], but the values of LAI are all scaled down so that the domain-averaged value on each day
is the same as for the ASSM run.

NDVI population i, and SRi,min is equal to the SR value
corresponding to 5% of the NDVI population.

It is assumed that the relationship between FPAR and
the LAI for evenly distributed vegetation at a regional
scale can be described by an exponential equation (Mon-
teith and Unsworth 1990) with the form

log(1 2 FPAR)
LAI 5 LAI ,i,max log(1 2 FPAR )max

where LAIi,max is the maximum green leaf area index
defined for vegetation type i. For clustered vegetation,
for example, coniferous trees and shrubs, the equation
becomes (Huemmrich and Goward 1992)

FPAR
LAI 5 LAI .i,max FPARi,max

In cases where there is a combination of clustered and
evenly distributed vegetation,

log(1 2 FPAR)
LAI 5 (1 2 F )LAIcl i,max log(1 2 FPAR )max

LAI FPARi,max1 F ,cl FPARmax

where Fcl is the fraction of clumped vegetation in the
grid area. The value of Fcl for each land-cover class can
be found in Sellers et al. (1996).

4. Experiment design and results

a. Experimental design

Three experiments were carried out to evaluate the
impact of directly assimilating NDVI-derived estimates
of LAI into ClimRAMS. In the first run, here called the
‘‘assimilation’’ (ASSM) run, the LAI is derived from
the NDVI observations. In the second run, here called
the ‘‘default’’ (DEF) run, LAI was prescribed to follow
the standard used in ClimRAMS (which follows that of
the equivalent BATS classes). The third run was a sen-
sitivity test (SEN), in which the LAI has the same spatial
distribution as for the DEF run, but the domain-averaged
value of LAI (and each contributing LAI) was reduced
to agree with the LAI derived from the NDVI obser-
vations. The spatial and temporal LAI distributions used
in these three experiments are shown in Fig. 6.
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FIG. 7. Observed, domain-averaged daily maximum and minimum screen-height air temperature and
daily precipitation for 1989 compared with the equivalent values calculated by ClimRAMS with as-
similation of LAI derived from NDVI. The variables have all been averaged over the (50 km) fine
grid. Also shown is the difference between the model and observations, and the 30-day running mean
of these differences. The mean (mn) and standard deviation (sd) for each panel and variable are included.

b. Results

The primary purpose of the present study was to in-
vestigate the impact of assimilating observational veg-
etation information directly into ClimRAMS. Conse-
quently, no attempt was made to ‘‘tune’’ model param-
eters in order to bring the ASSM simulation closer to
observations, although this could easily have been done.
(Note: because the soil-moisture initialization and co-
efficients in the precipitation parameterization used in
ClimRAMS have already been adjusted to match the
observations when the model is run in default mode, it
is to be expected, in the absence of retuning, that the
DEF run will give better agreement with the observed
climate than the ASSM run.) The present analysis fo-

cuses on analyzing the differences between ASSM, DEF,
and SEN simulations and what causes them. However,
an initial check was made to ensure that the ASSM run
was broadly consistent with observations as described
below.

1) ASSIMILATION RUN COMPARED TO

OBSERVATIONS

The simulated climate given by the ClimRAMS run
in which NDVI was assimilated (ASSM) is summarized
in Figs. 7 and 8. The model’s ability to reproduce the
observed domain-averaged daily maximum (Tmax) and
minimum (Tmin) screen-height air temperature and the
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daily precipitation is presented in Fig. 7, these variables
having been averaged over the domain of the nested,
50-km grid. The mean (mn) and standard deviation (sd)
for each panel and variable are also given in Fig. 7. In
each case, the difference between the modeled and ob-
served values is also shown, together with a 30-day
running mean of these differences. It is reassuring that
the model simulation adequately captures the synoptic
signal and evolution in seasonal temperature. Over the
year, the model-simulated Tmax and Tmin are, on average,
0.758 and 2.788C lower than observations, respectively,
while the modeled daily precipitation is, on average,
0.58 mm day21 too high with respect to observations.
The overestimation of precipitation occurs mainly in
JJA, that is, during the growing season; consequently,
the simulated Northern Hemisphere summer is colder
and wetter than observations in this domain.

The spatial patterns of Tmax, Tmin, and precipitation
generally capture the observed spatial patterns during
the winter months of January, February, and March (Fig.
8a) and the summer months June, July, and August (Fig.
8b). (Note: the temperature fields presented here have
not been corrected for the elevation differences between
the modeled values and observations.) A comparison of
the annual cycle of Tmax, Tmin, and daily precipitation at
the model grid cell level, corresponding to three cities
(Salina, Kansas; Sioux Falls, South Dakota; and Casper,
Wyoming) within the fine-grid domain (not shown),
confirm that the model is able to capture the regional
differences in both temperature and precipitation at
these locations. In summary, without retuning of model
parameters, the ASSM model simulation, in general,
successfully captured the seasonal variation in the pri-
mary atmospheric variables, although, undoubtedly,
some tuning of model parameters could be made to
further improve the model’s diagnostic and forecasting
skill.

2) ASSIMILATION RUN COMPARED TO DEFAULT RUN

The values of Tmax, Tmin, and precipitation averaged
over the fine grid given by the ASSM and DEF runs
are given in Fig. 9a. The differences between values
calculated in the ASSM and DEF simulations are also
plotted, together with 30-day running mean of these
differences. The value of Tmax given by the ASSM run
is lower than that given by the DEF run from June
through mid-October but is higher for the remainder of
the year. The value of Tmin given by the ASSM run is
colder than for the DEF run from April through No-
vember. Taken over the year, the ASSM run simulated
Tmax and Tmin as being on average 1.388C higher and
0.918C lower, respectively, than the DEF run. The daily
precipitation simulated by the ASSM run is on average
0.68 mm day21 more than for the DEF run, which is
the main reason why the modeled climate in the ASSM
run is generally colder than in the DEF run during the

growing season, when the additional precipitation main-
ly occurs.

The differences between the LAI distributions used
in the ASSM and DEF are clearly apparent in Fig. 6.
In the DEF run, seasonal evolution of LAI is defined
by the BATS classification and has a sinusoidal variation
with the day of the year. Consequently, the spatial pat-
tern and, indeed, magnitude of the LAI stay much the
same from June through October. On the other hand,
the ASSM run uses the 10-day composite NDVI data
to derive the specification of LAI, which results in much
greater heterogeneities across the modeled domain, both
in terms of the spatial distribution and the seasonal evo-
lution of the LAI. It is well known that such land surface
heterogeneity can induce mesoscale circulations in the
atmosphere that not only influence the surface layer im-
mediately above the vegetation, but which also can trig-
ger moist convection and precipitation in preferred ar-
eas.

3) SENSITIVITY RUN COMPARED TO DEFAULT RUN

There are two striking differences between the spec-
ification of LAI used in the ASSM and DEF runs. First,
the magnitude of the domain-averaged LAI during the
summer season is approximately a factor of 2 less for
the ASSM run than for the DEF run. Second, the LAI
spatial distribution of the LAI used in the ASSM run
is much more heterogeneous than that used in the DEF
run. The question arises: Which factor leads to the extra
precipitation produced during the ASSM run? To clarify
this issue, a third run (SEN) was carried out in which
the LAI was specified to have the same domain-aver-
aged value as the ASSM run, but the spatial distribution
of the DEF run (Fig. 6). Specifically, the LAI for each
default vegetation class was scaled down by a factor
equal to the ratio of the domain-averaged LAI for the
ASSM run divided by the domain-averaged LAI for the
DEF run, this latter ratio being, of course, a function
of the day of the year. Comparison between the simu-
lated climates given in the SEN and ASSM runs relative
to that given by the DEF run should define whether it
is the overall magnitude of the NDVI-derived LAI or
greater LAI heterogeneity that is most important.

The domain-averaged values of Tmax, Tmin, and daily
precipitation for the SEN and DEF runs are shown in
Fig. 9b, together with differences between these vari-
ables, and 30-day running mean of these differences.
There is a marked difference between Figs. 9a and 9b.
The climate simulated by the SEN run much more close-
ly follows that simulated by the DEF run. On average,
for 1989, the values of Tmax and Tmin by the SEN run
are 1.328C higher and 0.928C lower, respectively, than
those simulated by the DEF run, and the precipitation
is on average 0.06 mm day21 lower than for the DEF
run during the growing season. Thus, the climate sim-
ulated in the SEN run, in fact, has a drier and warmer
summer than the DEF run, the opposite result to that



JUNE 2002 359L U A N D S H U T T L E W O R T H

F
IG

.
9.

D
om

ai
n-

av
er

ag
ed

da
il

y
m

ax
im

um
an

d
m

in
im

um
sc

re
en

-h
ei

gh
t

ai
r

te
m

pe
ra

tu
re

an
d

da
il

y
pr

ec
ip

it
at

io
n

fo
r

19
89

ca
lc

ul
at

ed
by

C
li

m
R

A
M

S
fo

r
(a

)
th

e
D

E
F

an
d

A
S

S
M

ru
ns

,
an

d
(b

)
th

e
S

E
N

an
d

D
E

F
ru

ns
.

In
ea

ch
ca

se
,

th
e

va
ri

ab
le

s
ha

ve
al

l
be

en
av

er
ag

ed
ov

er
th

e
(5

0
km

)
fi

ne
gr

id
.

A
ls

o
sh

ow
n

is
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

m
od

el
an

d
ob

se
rv

at
io

ns
,

an
d

th
e

30
-d

ay
ru

nn
in

g
m

ea
n

of
th

es
e

di
ff

er
en

ce
s.

T
he

m
ea

n
(m

n)
an

d
st

an
da

rd
de

vi
at

io
n

(s
d)

fo
r

ea
ch

pa
ne

l
an

d
va

ri
ab

le
ar

e
in

cl
ud

ed
.



360 VOLUME 3J O U R N A L O F H Y D R O M E T E O R O L O G Y

for the ASSM run. Consequently, reducing the magni-
tude of LAI alone does not contribute to the extra pre-
cipitation simulated in the ASSM run. On the contrary,
the simulated precipitation decreased (as might be ex-
pected if the overall magnitude of the LAI decreases).
We conclude that it is the introduction of heterogeneity
into NDVI-derived fields that is the primary cause of
the generally wetter and colder summer climate pro-
duced in the ASSM simulation.

This is an important result. Assuming that Clim-
RAMS is typical of other regional climate models, this
suggests that when climate is simulated with a model
that has a grid mesh sufficiently fine for the effect of
surface heterogeneities to have impact on modeled con-
vective processes, not only the temporal but also the
spatial distribution of LAI can have a significant impact
on the simulated area-average climate. However, be-
cause this result may be model- and domain-dependent,
it is important that it is tested with other models at other
locations.

5. Summary, discussion, and conclusions

This study focused on implementing the assimilation
of NDVI-derived LAI into ClimRAMS and evaluating
the impact of doing so on the climate simulated by the
model. Our results show that the regional climate mod-
eled by ClimRAMS with assimilation of NDVI remains
reasonable relative to observations without any attempt
to tune the model from its default state. We also found
the modeled climate to be sensitive to the specification
of LAI specification in ClimRAMS, and that changes
in LAI in fact have a first-order effect on the model-
simulated weather and climate. When NDVI-derived
LAI is assimilated, the modeled climate is cooler and
has more precipitation than that simulated by Clim-
RAMS using its default LAI specification. Further, the
effect of heterogeneity in LAI (when combined with a
reduced magnitude of LAI) appears to dominate over
the effect of an overall area-average reduction in LAI
acting alone. Our primary conclusion is, therefore, that
including a realistic description of the phenology of
heterogeneous vegetation can and, at least in the case
of ClimRAMS, does influence the prediction of seasonal
climate in a regional climate model that has sufficient
resolution to resolve some of the surface heterogeneity
in LAI.

Four-Dimensional Data Assimilation (4DDA) is
widely used as the basis of initiating real-time weather
forecasts, and the required real-time global network for
atmospheric observation is well established. The recent
advent of land surface information derived from satellite
observations opens up the possibility of assimilating
new variables, such as leaf area index (LAI), surface
albedo, and soil moisture into numerical models. This
study suggests that there may be potential benefit in
assimilating at least indirectly measured LAI in real-
time into regional models.

While conducting our sensitivity experiments with a
coupled modeling system, we realize that regional at-
mospheric models are necessarily highly constrained by
their prescribed lateral boundary conditions, and some
of the effect of vegetation feedback may be lost. Land
surface properties can act as a mechanism to provide
‘‘triggering effects’’ in regional climate models, with
the overall water and energy budget still largely pre-
scribed by boundary conditions, and the effect of land
surface characteristics being mainly a redistribution of
water and energy within the simulation domain. In the
present study, this was mitigated by two-way nesting of
the high-resolution domain of interest within a much
larger domain, but some remnant influences of boundary
forcing may still be present in our results.

Overall, our study makes a case for the real-time use
of satellite-derived LAI in fine-resolution climate mod-
els, preferably in fine-resolution climate models oper-
ating at a global scale, but at least in fine-resolution
regional climate models that are two-way nested within
general circulation models. Associated with this is the
continuing need for improved NDVI data retrieval pro-
cesses and the NDVI-to-LAI conversion algorithms.
Fortunately, this need is now receiving increased atten-
tion with the advent of relevant satellite systems within
the Earth Observing System. There is also a continuing
need to advance high-resolution global-scale modeling
capability. A parallel programming version of Clim-
RAMS is currently being developed that can run at high-
er resolution for several years. Hopefully, this new mod-
eling system will be able to resolve mesoscale circu-
lations generated by land surface heterogeneities—an
important feature in the present study—and at the same
time represent the possible long-term feedbacks from
the vegetation and soil moisture. Thus, on the basis of
this study, we argue that assimilating the observed veg-
etation distribution into models is worthwhile, and we
anticipate that including remotely sensed observations
of vegetation cover will soon become standard in 4DDA
systems.
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