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Abstract
A set of MATLAB Functions for Mie calculations (Mätzler, 2002a) and for applica-
tions to microwave radiation in rain (Mätzler, 2002b) has been improved and
expanded by including magnetic and metal-like media and coated spheres. The
appendix includes a discussion of the basic behaviour or the Riccati-Bessel and
related Functions needed in the computations of Mie Coefficients.
The applications of the Mie Functions are directed toward the study of radiative
properties of precipitation. Functions have been developed to compute propagation
parameters for freezing rain and melting graupel, assuming Marshall-Palmer drop-
size distribution, including functions to compute the complex dielectric permittivi-
ties of ice and water. Other applications can be envisaged if the dielectric or refrac-
tive properties of the particles and their size distributions are known.
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1 Introduction
This report is an extension of Mie-scattering and -absorption programs (Mätzler,
2002a) and applications to propagation, scattering and emission of microwave
radiation in precipitation (Mätzler, 2002b) written in the numeric computation and
visualisation software, MATLAB (Math Works, 1992). Mie Theory is based on the
formulation of Bohren and Huffman (1983), in short BH. There and here the
assumed time variation of the fields is exp(-i!t), leading to positive imaginary parts
of the refractive index for absorbing media. For corresponding equations, equation
numbers refer to those in BH or to page numbers of BH. In addition, for absorption
by the internal electrical and magnetic fields, see Section 3.6 of the present report.
For descriptions of computational problems in the Mie calculations, see the notes
on p. 126-129, in Appendices A and B of BH and in the Appendix of this report
which includes a description of the relevant functions (Riccati-Bessel functions and
combinations thereof) and of their numerical behaviour.
Microwave interaction with precipitation mainly refers to Sauvageot (1992) and to
Mätzler (2002b), including references therein.
Descriptions of the functions are given in Section 3, followed by some examples in
Section 4.

2 Overview of changes with respect to Version 1
First of all, with respect to Mätzler (2002a), the parameter range was extended to
larger size parameters in case of large imaginary refractive index (metal-like
spheres) by replacing the function Mie_abcd for the Mie Coefficients an, dn, cn, dn by
two separate functions with improved algorithms, Mie_ab to compute an, bn  and
Mie_cd for cn, dn.
Second, the new version allows for magnetic materials, by using the alternative
functions Mie2_ab for an, bn, and Mie2_cd for cn, dn. Functions starting with the
name Mie2... refer to magnetic spheres with media properties given by mu1= "1/"
and eps1=#1/#, where # and " are the permittivity and permeability of the ambient
medium and #1 and "1 are the parameters of the sphere. For nonmagnetic spheres
i.e. for  "1=", there is a single medium-parameter (as in Version 1), the refractive
index m relative to the ambient medium. This is the case for MATLAB functions
starting with Mie... (i.e. without 2). The old function, Mie_abcd, of Version 1 is still
included to enable numerical comparisons.
Third, the function Mie(m,x) returns the Mie Efficiencies (Qext, Qsca, Qabs, Qb,
<costeta>), but no more the input parameters. The same is true for the respective
functions, Mie2 and Miecoated. In this way the output of these three functions gets
the same format.
Forth, the new version also includes functions for coated spheres with inner radius
a (size parameter x=ka) and outer radius b (size parameter y=kb). The kernel has a
refractive index m1, and the coating has m2, both relative to the ambient medium.
Non-magnetic media are assumed as in BH. The name of such functions start with
‘Miecoated’.
Finally, freezing rain and melting graupel, both with Marshall-Palmer drop-size
distribution, are also included, see the functions Miecoated_raini, where i is a
number. These functions expand the microwave applications of rain (Mätzler,
2002b) to other forms of precipitation. Without difficulty, other size distributions
can be introduced (e.g. Sauvageot, 1992, Section 2.2).
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3 Functions and computational procedures
3.1 Mie Coefficients for homogeneous spheres
MATLAB Functions:
Mie_ab(m, x) produces an and bn, for n=1 to nmax for non-magnetic spheres
Mie_cd(m, x) produces cn and dn, for n=1 to nmax for non-magnetic spheres
Mie2_ab(eps1, mu1, x) produces an and bn, for n=1 to nmax for magnetic spheres
Mie2_cd(eps1, mu1, x) produces cn and dn, for n=1 to nmax for magnetic spheres
Mie_abcd(m, x) produces an, bn, cn and dn, for n=1 to nmax for non-magnetic spheres (from Version 1)

The key parameters for Mie calculations are the Mie Coefficients an and bn to com-
pute the amplitudes of the scattered field, and cn and dn for the internal field,
respectively. The coefficients are given in BH on p.100. First, the coefficients of the
scattered electrical field are:
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where prime means derivative with respect to the argument; similar expressions
exist for the coefficients cn and dn of the internal field (see below). The Index n runs
from 1 to &, but the infinite series occurring in Mie formulas can be truncated at a
maximum,  nmax; for this number Bohren and Huffman (1983) proposed

24 3/1
max ''% xxn (p.477)

and this value is used here as well. The size parameter is given by x=ka, a is the
radius of the sphere and k =2(/) is the wave number, ) the wavelength in the
ambient medium, m=(#1"1)1/2/(#")1/2 is the refractive index with respect to the ambi-
ent medium, #1 and "1 are the permittivity and permeability of the sphere and # and
" are the permittivity and permeability of the ambient medium. The functions jn(z)
and )()1( zhn =jn(z)+iyn(z) are spherical Bessel functions of order n and of the given
arguments, z= x or mx, respectively. The derivatives follow from the spherical Bessel
functions themselves, namely
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Relationships exist between Bessel and spherical Bessel functions:
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Here, J* and Y* are Bessel functions of the first and second kind; for n=0 and 1 the
spherical Bessel functions are simply given (BH, p. 87) by
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and the recurrence formula can be used to obtain higher orders
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)(12)()( 11 zf
z
nzfzf nnn
'

%' '$ (4.11)

where fn is any of the functions jn and yn. Power-series expansions for small argu-
ments of jn and yn are given on p. 130 of BH. The spherical Hankel Functions are
linear combinations of jn and yn. Here, the first type is required

)()()()1( ziyzjzh nnn '% (4.13)

The related Riccati-Bessel Functions will also be used:
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By transforming (4.53) we get expressions corresponding to (4.88) in BH, but now
allowing "1 to be different from ". Under certain conditions these expressions are
more suitable for numerical computations; at the same time, the most delicate
functions, -n(mx)=mx.jn(mx), and their derivatives are eliminated in the equations for
the scattered field (Mie_ab and Mie2_ab). As shown in the Appendix, the function
-n(mx) and its derivative diverge for lossy media, and the effect is especially strong
for, metals (the reason for the limited range of application in Version 1). On the
other hand, the logarithmic derivative Dn of -n
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remains finite except for x/0. The function Dn(z) with the complex argument z=mx
is computed as described in BH in Section 4.8, by downward recurrence
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starting at n=nstart=round(max(nmax,abs(z))+16), by using Dnstart=0, and ending at
n=2. The values of D1 to Dnmax are used by the MATLAB Function Mie(m, x) for "1="
and Mie2(eps1, mu1, x) for "10", i.e. magnetic spheres.
Dividing nominator and denominator of the expression for an in (4.53) by
-n(mx)=mx.jn(mx)  we get
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Correspondingly, using the same transformation, we get for bn
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The impedance and refractive-index ratios z1 and m, respectively, between inside
and outside of the sphere are given by
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The coefficients of the internal field, including magnetic effects, are given by
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Note that the function jn(mx) and its derivative cannot be eliminated in (4.52). How-
ever, as they appear in the denominator only, their divergence just leads to dimin-
ishing values of cn and dn.
The computation of the functions with the real argument x is done as in Version 1
by directly calling the MATLAB built-in Bessel Functions.

3.2 Mie Coefficients for coated spheres
MATLAB Functions: Miecoated_abopt(m1, m2, x, y) produce an and bn, for n=1 to nmax for Option

opt=1, 2, 3.

Mie Coefficients an and bn of coated spheres can be used in the same way as the
ones for homogeneous spheres (BH, Section 8.1) to compute cross sections and
scattering diagrams. The model of BH assumes non-magnetic materials. The coated
sphere has an inner radius a with size parameter x=ka (k is the wave number in the
ambient medium) and m1 is the inner-medium refractive index relative to the ambi-
ent medium, a coating of outer radius b with relative refractive index m2, and size
parameter y=kb.
One form (Option 1) used to compute the Mie Coefficients of coated spheres is the
following (as presented in Appendix B of BH, p. 483):
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The computation of these coefficients can cause problems for certain combinations
of the parameters (m1, m2, x, y) because of the diverging nature of some of the
functions used (see e.g. Figures in the Appendix of this report and the discussion in
Appendix B of BH). Therefore three different options are available for tests and
comparisons. Under good conditions, the results of all options are the same. Prob-
lems are indicated if the results differ noticeably or if NaN values are returned.
Option 1 uses the computation as formulated above, and the recurrence relation
(4.89, p. 127) for the functions Dn. Careful treatment of diverging functions (e.g.
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avoiding direct products of them) is applied. Option 2 uses the fromulation on p.
183 of BH. The same formulas are also used in Option 3, but for the derivatives ,n’
the equation at the bottom of p. 483, resulting from the Wronskian (4.60), is applied
instead of the ordinary relationship (BH, p. 127). The selection of the Option is done
by the Option Parameter, opt, in MATLAB Function Miecoated (see below). Standard
Option used in the applications is opt=1.

3.3 Computation and plot of Mie Efficiencies
MATLAB functions:
Mie(m, x) produces Qext, Qsca, Qabs, Qb, <costeta>, for non-magnetic spheres
Mie2(eps1, mu1, x) produces Qext, Qsca, Qabs, Qb, <costeta>, for magnetic spheres
Miecoated(m1,m2,x,y,opt) produces Qext, Qsca, Qabs, Qb, <costeta>, for non-magnetic, coated

spheres for size parameters x  and y, of kernel and coating, repectively, Option (opt=1,2,3).
Mie_xscan(m, nsteps, dx) and Mie2_xscan(eps1, mu1, nsteps, dx) are used to plot the efficiencies

versus size parameter x in a number (nsteps) of steps of increment dx from x=0 to x=nsteps.dx.
Miecoated_iscan(m1,m2,y,nsteps), where i=w, wr, pr are used to plot the efficiencies (for given y) ver-

sus volumetric fraction w of the coating, fractional thickness wr and pr of core and coating, respec-
tively, and Option for Miecoated is opt=1.

The efficiencies Qi for the interaction of radiation with a sphere of radius a are cross
sections 3i (called Ci in BH) normalised to the geometrical particle cross section,
3g=(a2, (3g=(b2, in case of coated spheres), where i stands for extinction (i=ext),
absorption (i=abs), scattering (i=sca), backscattering (i=b), and radiation pressure
(i=pr), thus

g

i
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Energy conservation requires that

absscaext QQQ '% ,  or absscaext 333 '% (3.25)

The scattering efficiency Qsca follows from the integration of the scattered power over
all directions, and the extinction efficiency Qext follows from the Extinction Theorem
(Ishimaru, 1978, p. 14, van de Hulst, 1957, p. 31), also called Forward-Scattering
Theorem, leading to:
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and Qabs follows from (3.25). All infinite series can be truncated after nmax terms.
Furthermore, the asymmetry parameter g= 5cos  indicates the average cosine of

the scattering angle 5 with respect to power; it is used e.g. in Two-Stream Models
(Meador and Weaver, 1980), and it is related to the efficiency Qpr of radiation pres-
sure:
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Finally, the backscattering efficiency Qb, applicable to monostatic radar, is given by
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3.4 The scattered far field
MATLAB functions:
Mie_S12(m, x, u), Mie2_S12(eps1, mu1, x, u) to compute the functions S1 and S2 where u=cos(5) for

scattering angle 5
Mie_pt(u, nmax) to compute the angular functions (n(u) and <n(u), for n=1 to nmax. The same function

is applicable to magnetic, non-magnetic and coated spheres.
Mie_tetascan(m, x, nsteps), Mie2_tetascan(eps1, mu1, x, nsteps) and Miecoated_tetascan(m1, m2, x,

y, nsteps) are used to plot the scattered power versus scattering angle teta in a number (nsteps) of
steps from 0 to 180° for non-magnetic and magnetic spheres, and for coated spheres, respectively.

Mie scattering intensities 
2

1S and 
2

2S  are plotted as a function of u=cos5, the result being shown

as a polar diagram of 5 with 
2

1S  in the upper half circle (0<5<() and 
2

2S  in the lower half circle

((<5<2().

If the detailed shape of the angular scattering pattern is required, e.g. to get the
phase matrix or phase function for radiative-transfer calculations (Chandrasekhar,
1960), the scattering functions S1 and S2 are required. These functions describe the
scattered field Es. The scattered far field in spherical coordinates (Es5, Es=) for a unit-
amplitude incident field (where the time variation exp(-i!t) has been omitted) is
given by
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with the scattering amplitudes S1 and S2
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Es5 is the scattered far-field component in the scattering plane, defined by the inci-
dent and scattered directions, and Es= is the orthogonal component. The angle = is
the angle between the incident electric field and the scattering plane. The functions
(n(cos5) and <n(cos5) describe the angular scattering patterns of the spherical har-
monics used to describe S1 and S2 and follow from the recurrence relations
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starting with (Deirmendjian, 1969, p. 15)
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3.5 The internal field
MATLAB function: presently, no direct function, but see Mie_Esquare and Mie2_Esquare below

The internal field E1 for an incident field with unit amplitude is given by
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where the vector-wave harmonic fields are given in spherical (r,5,=) coordinates by
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and the coordinate system is defined as for the scattered field. The vector-wave
functions N and M are orthogonal with respect to integration over directions. Fur-
thermore for different values of n, the N functions are orthogonal, too, and the same
is true for the M functions.

3.6 Computation of Qabs, based on the internal fields
MATLAB functions:
Mie_Esquare(m, x, nj), Mie2_Esquare(eps1, mu1, x, nj) to compute nj values from 0 to x of the abso-

lute-squared electrical field inside the sphere
Mie_abs(m, x), Mie2_abs(eps1, mu1, x) to compute the absorption coefficient, based on Ohmic losses

(and including magnetic losses in case of Mie2_abs)

3.6.1 Dielectric losses only
The absorption cross section of a particle with dielectric (i.e. Ohmic) losses is given
by (Ishimaru, 1978, p. 17)

dVk
V

abs F% 2
1" E#3 (8)

where #” is the imaginary part of the relative dielectric constant of the particle (here
with respect to the ambient medium). Thanks to the orthogonality of the spherical
vector-wave functions this integral becomes in spherical coordinates
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and the integration over azimuth = has already been performed, leading to the factor
(. The functions in the integrand are absolute-square values of the series terms of
the components of the vector-waves (4.50)
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Here z=mrk, and gn stands for
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For the integrals over cos5, analytic solutions can be obtained. First, from BH we
find
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and second, from (4.46) in BH and Equation 8.14.13 of Abramowitz and Stegun
(1965), we get
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leading to the two parts (13) and (14) of the angular integral in (9)
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Now, the absorption cross section follows from integration over the radial distance r
inside the sphere up to the sphere radius a:

> ?4F
&

%

.'%
1 0

222"
n

a

nnnnabs drrdncmk (#3 (15)

The integrand contains the radial dependence of the absolute-square electric field
2E averaged over spherical shells (all 5 and =, constant r):
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and in terms of this quantity, the absorption efficiency becomes
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where x’=rk=z/m. Note that (16) is dimensionless because of the unit-amplitude
incident field; In case of Rayleigh scattering (x<<1) the internal field is constant, and
the corresponding squared-field ratio (16) is given by

22 2

9
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(18)

This quantity can be used to test the accuracy of the function, Mie_Esquare,  for
small size parameters. In addition, Equation (17) or (19) can be used to test the
accuracy of the computation of Qabs from the difference, Qext –Qsca (4.61-62). Finally,
it should be noted again that all infinite series can be terminated after nmax terms.

3.6.2 Dielectric and magnetic losses
For spheres including magnetic losses, the absorption efficiency also includes a
magnetic current, the equivalent term due to the imaginary part "”=imag("1/") of
the magnetic permeability. By duality (Kong, 1986), the electrical field E has to be
replaced by the magnetic field H, thus

F%
x

abs dxx
x

Q
0

22
2 ''"4 E# + F

x

dxx
x 0

22
2 ''"4 H" (19)

and 
2H  is obtained by interchanging "1/"=mu1 and #1/#=eps1, i.e. calling

Mie2_Esquare(mu1, eps1, x, nj).

3.7 Dielectric functions for water and ice
MATLAB Functions
Computation of complex refractive index: mi=sqrt(epsi), where i=ice or water:
epswater(fGHz, TK): complex permittivity of water according to Liebe et al. (1991), at frequency fGHz

in GHz and temperature TK in Kelvin.
epsice(fGHz, TK): complex permittivity of ice according to Mätzler (1998), at frequency fGHz in GHz

and temperature TK in Kelvin.

The above functions are applicable over a frequency range of at least 1 to 1000 GHz
and for appropriate temperatures of the atmosphere (100 to 273K for water ice, 250
to 320 K for liquid water). Impurities are not taken into account here.

4 Examples and Tests
4.1 The situation of x=1, m=1000+1000i
Metals are characterised by large imaginary permittivity; the chosen value is an
example of a metal-like sphere for which Mie_abcd of Version 1 returned NaN val-
ues. Now, the execution of the command line
>> m =1000 + 1000i; x = 1; mie_ab(m,x)
returns the vectors [an; bn] for n=1 to nmax=7:   ans =  Columns 1 through 4

   0.2926 - 0.4544i   0.0009 - 0.0304i   0.0000 - 0.0008i   0.0000 - 0.0000i
   0.0455 + 0.2077i   0.0003 + 0.0172i   0.0000 + 0.0005i   0.0000 + 0.0000i
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  Columns 5 through 7

   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

whereas the function mie_cd(m,x) returns zeros.

4.2 Magnetic sphere with x=2, eps1=2+i, mu1=0.8+0.1i
The command line
>> eps1=2+1i; mu1=0.8+0.1i; x=2; mie2_ab(eps1,mu1,2)
leads to the Mie Coefficients:    ans =   Columns 1 through 4

   0.3745 - 0.1871i   0.1761 - 0.1301i   0.0178 - 0.0237i   0.0010 - 0.0016i
   0.3751 + 0.0646i   0.0748 + 0.0294i   0.0068 + 0.0044i   0.0004 + 0.0003i

  Columns 5 through 8

   0.0000 - 0.0001i   0.0000 - 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

  Column 9

   0.0000 - 0.0000i
   0.0000 + 0.0000i

whereas the command line
>>mie2(eps1,mu1,2)
returns the Mie Efficiencies Qext, Qsca, Qabs, Qb, <costeta> and Qb/Qsca
ans =   1.8443    0.6195    1.2248    0.0525    0.6445    0.0847

and the command line
>>mie2_abs(eps1,mu1,2)
gives the absorption efficiency by the alternative way

Qabse =    0.9630
Qabsm =   0.2618
ans =  1.2248

Here Qabse is the absorption efficiency due to the electrical field (Ohmic losses),
Qabsm due to the magnetic field, and ans is the sum, i.e. the total absorption effi-
ciency, in agreement with the third number of the result of Mie2(eps1, mu1, x), s.
above.

Mie Efficiencies are plotted versus x  (0HxH5) by Mie2_xscan(eps1, mu1, 501, 0.01) in Fig.
1. To plot the angular dependence of the scattered power in the two polarisations,
the function Mie2_tetascan(eps1,mu1,x,201), for x=0.2, is used to provide Figure 2.
Furthermore the absolute-square internal E and H fields are plotted versus the
radial distance at x=5 by calling Mie2_Esquare(eps1,mu1,x,201) for E in Figure 3 (left)
and Mie2_Esquare(mu1, eps1,x,201) for H in Figure 3 (right).
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Figure 1: Mie Efficiencies
for eps1=1+i, mu1=0.8+0.1i,
versus x, output of the
function, Mie2_xscan.
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the situation of Figure 1.

Figure 3 (below): Radial variation of the
ratio of the internal/external absolute-
square electric field (left) and magnetic
field (right) with x=5 for the situation of
Figure 1. Due to the skin effect, the field
is concentrated near the edge of the
sphere.
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In contrast to non-magnetic spheres, the behaviour at low x values is different in
Figure 1 where the ratio Qb/Qsca does not approach the Rayleigh result of 1.5 for
non-magnetic spheres (Mätzler, 2002a). Here, the value is slightly larger. On the
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other hand if eps1=mu1 we get Qb=0 for all values of x. An equivalent result is found
for the reflection on a plane surface at vertical incidence where the reflection
disappears for eps1=mu1 because there is no impedance change.

4.3 Water-coated ice sphere
The following command produces a plot of Mie Efficiencies versus relative thickness
of the coating for a water-coated ice sphere at 31 GHz, y=1, TK=273K (s. Figure 4):
>>miecoated_wrscan(sqrt(epsice(31,273)),sqrt(epswater(31,273)),1,4000)
Note the significant effect of very thin coatings of liquid water on absorption, here.

10-4 10-3 10-2 10-1 100
10-3

10-2

10-1

100

101
Mie Efficiencies of coated sphere, y=1, m1=1.78561+0.000778281i, m2=4.2963+2.54109i 

(b-a)/b

Qext
Qsca
Qabs
Qb
<costeta>

Figure 4: Mie Efficiencies
versus relative thickness
of coating for water-coated
ice sphere of y=1  at 31
GHz, T=273K, i.e.
b=1.54mm. Note the dou-
ble-logarithmic scaling.
Whereas the effect of liq-
uid water on scattering
disappears for very thin
coatings, Qabs is still
affected.

4.4 Ice-coated water sphere
The following command produces a plot of Mie Efficiencies versus relative thickness
of the coating for a water-coated ice sphere at 31 GHz, y=1, TK=273K (Figure 5):
>> miecoated_wrscan(sqrt(epswater(31,273)),sqrt(epsice(31,273)),1,4000)
In contrast to coatings of liquid water (Section 4.3), Figure 5 does not show a
special sensitivity to thin coatings of ice.
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Figure 5: Mie Efficiencies
versus relative thickness
of water coating for an ice
sphere of y=1 at 31 GHz,
273K, i.e. b=1.54mm. Note
the logarithmic scale in
the vertical axis and the
linear scale in the hori-
zontal axis.

4.5 Water bubble
Water bubbles appear as near black bodies (Qabs>>Qsca). An example is shown by
>> miecoated_wrscan(1, sqrt(epswater(31,273)),5,4000), see Figure 6.

10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

100
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Mie Efficiencies of coated sphere, y=5, m1=1+0i, m2=4.2963+2.54109i 

(b-a)/b

Qext
Qsca
Qabs
Qb
<costeta>

Figure 6: Mie Efficiencies
versus relative thickness
of coating for water-coated
ice sphere of y=5 at 31
GHz, 273K, i.e. b=7.7mm.
Note the double-logarith-
mic scaling.

4.6 Freezing rain
For freezing rain, it is assumed that the ice coating of the rain drops is independent
of the drop size. Spectra of propagation constants (Mätzler, 2002b) are computed by
the MATLAB Function Miecoated_rain5 (Figure 7)
>> miecoated_rain5(0.1, 4, 273, 1, 100, 30)
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Figure 7: Propagation con-
stants versus frequency
for freezing rain with Mar-
shall-Palmer drop-size
distribution for R=4mm/h
and constant thickness of
ice coating of b-a=0.1 mm.
Note the double logarith-
mic scales.

and a plot versus thickness of the ice coating at 31 GHz, R=4mm/h is created by
>> miecoated_rain7(0.1, 4, 273, 1, 100, 30)
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G
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Gb
Gsca<costeta>)

Figure 8: Propagation con-
stants at 31 GHz versus
thickness of ice coating for
freezing rain with Mar-
shall-Palmer drop-size
distribution for R=4mm/h.

4.7 Melting graupel
The opposite to freezing rain is precipitation of melting graupel. Figure 9 shows
spectra of a situation with a very thin (0.01mm) liquid layer, assuming a Marshall-
Palmer size distribution,
>> miecoated_rain4(0.01,4,273,1,100,10).
Figure 10 shows the dependence on the thickness of the water coating.
>> miecoated_rain6(18,1,273)
A very thin water layer can have a significant contribution to the absorption coeffi-
cient, and at 18 GHz, the maximum absorption occurs for a coating of about
0.04mm. Note the lack of symmetry between the opposed situations of Figures 8
and 10.
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Figure 9: Propagation con-
stants versus frequency
for melting graupel at
R=4mm/h with Marshall-
Palmer size distribution
for R=4mm/h and con-
stant thickness of ice
coating of b-a=0.01 mm.
Note the double logarith-
mic scales.
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Figure 10: Propagation
constants versus thick-
ness of water coating for
melting graupel at 18 GHz,
R=1mm/h with Marshall-
Palmer size distribution.

5 Conclusions
This version of MATLAB Functions for Mie calculations expands on Version 1
(Mätzler, 2002a) by the wider range of parameters allowed in case of non-magnetic
spheres, by the addition of functions for magnetic materials and for coated spheres.
Furthermore, a deeper analysis of Riccati-Bessel Functions has taken place as a
guide for situations in which numerical problems may occur.
The applications of the present work have been concentrated on microwave and
millimeter-wave radiation to precipitation in form of rain, freezing rain and melting
graupel. As a simplification, it was assumed that the thickness of the coating is not
dependent on the particle size. Interesting differences were found between the
behaviour of ice spheres coated by liquid water and water spheres coated by ice.
Based on the presented work, the applications can be extended to other particles.
As an example, water-coated aerosols can be treated if the complex refractive index
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of the core material is known. Furthermore, foam-like materials may be regarded as
clouds of hollow spheres.
A related problem, not solved by the present work, is the interaction of radiation
with falling snow, both wet and dry. Spherical particles cannot account for the
highly non-spherical shape of snow flakes. Nevertheless an approximate solution
could be envisaged by using properly selected distribution functions of equivalent
coated spheres (Grenfell and Warren, 1999). Other methods are needed if the scat-
terers are not isotropically oriented (Mätzler, 2002c).
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Appendix: Behaviour of Riccati-Bessel Functions

From the Wronskian, Equation (4.60) of BH

1'' %$ nnnn ,-,- (4.60)

it follows that the logarithmic derivatives of the Riccati-Bessel Functions -n and ,n

are not independent, but they are related by
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is the inverted product. We will also need the ratio Fn, defined by

n

n
nF ,
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These Functions of variable z=mx play important roles in Mie Theory. Their behav-
iour is qualitatively similar at all Orders n; as an example we choose n=10. In the
following graphs the functions are presented versus size parameter x for various
values of the complex refractive index m. The special characteristics shown
enlighten the properties and associated problems of the formulas for the Mie Coef-
ficients.
For better visualisation of the figures to follow, the reader is encouraged to repeat
the plotting in MATLAB. Starting with a relatively large, complex m in Figure A1
(m=40+39i) as obtained with the command >> besselplot1(10, 40+39i, 0, 0.01, 350),
it is observed that the Riccati-Bessel functions diverge exponentially for linearly
increasing x, and the rate of divergence would increase with increasing value of
imag(m). (The complex-conjugated quantity -n*(z) is plotted instead of -n(z), because
otherwise the curves would coincide with parts of ,n(z)).
The function, +n(z)=-n(z)-i,n(z), rapidly converges to 0, indicating that the two
Riccati-Bessel Functions are tightly related, i.e. Fn/i for x/&. This follows from the
asymptotic expansion of the Hankel Functions (p. 93-94 of BH):

imxn
nn eimxmxhmx 1)1( )()()( '$/%+ (A4)

Thus the absolute values converge to zero as
xmimag

n emx )()( $%/+ ; x/& (A5)

The data points below the main data band by a factor of about 10-15 represent the
digital noise generated by the dual-precision computation. The actual values of
+n(mx) rapidly decrease and converge to 0 with increasing x as indicated in the x
range from 0 to 0.5. Beyond x=0.5 dual precision is not sufficient any more to get
accurate values of +n(mx).
There is an symmetry between the convergence of +n and the divergence of its
components, -n(z) and ,n(z). Because of the insufficient precision this symmetry is
not apparent if Figure A1a, but it is very clearly shown in Figure A2a.
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The logarithmic derivatives of Figure A1b rapidly converge to –i, but they diverge for
x/0, and they show a special transition, here at xtransI0.15, as shown in the Detail
Subfigure to A1b. For this transition point we found an approximate behaviour

)()( mimagmreal
nxrans '

J (A6)

In Figure A1c the last term En is shown. This function rapidly converges to 0 for
increasing x. On the other hand, for x/0, En diverges slightly by z-1
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whereas  -n and ,n are proportional to zn+1 and z-n, respectively, for small z, and
thus, the ratio Fn goes as z2n+1.
As examples for smaller values of m, we choose real(m)=2, with imag(m) decreasing
from 1 in Figure A2 to 0.09 in Figure A3, to 0 or 0.009, respectively, in Figure A4,
and to the negative value, -0.09 in Figure A5. With decreasing imag(m) the expo-
nential divergence of the Riccati-Bessel Functions is weakened, leading to undam-
ped oscillations for real m in Figure A4a. At the same time the logarithmic deriva-
tives become more and more oscillatory, even diverging for certain x values in case
of real m. The same is true for the function En shown in Figures A2c, A3c, A4c. This
means that for real m values, care must be taken when using the functions shown
in Figure Parts, b and c. For negative imag(m), in Figure A5a, again an increase of
the oscillation amplitude with increasing x is observed, but with a different behav-
iour of the phase when compared with the same positive imaginary value (Figure
A3a).

The following figures were produced by the MATLAB Programs:

besselplot1(n, m, xmin, dx, nx):  Computation and plot of Riccati-Bessel Functions of Order n, input:
order n, refractive index m, xmin: minimum x value, dx interval, number of x values nx.

besselplot2(n, m, xmin, dx, nx): Computation and plot of logarithmic derivatives of Riccati-Bessel
Functions of Order n for complex argument z=m*x.

besselplot3(n, m, xmin, dx, nx): Computation and plot of Inverse Products En of Riccati-Bessel Func-
tions

Furthermore, differences of the logarithmic derivatives of the Riccati-Bessel func-
tions are plotted by

besselplot4(n, m, xmin, dx, nx)

and absolute values of Riccati-Bessel Functions versus x are plotted by

besselplot5(n, m, xmin, dx, nx)
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Figure A1a (left):
The complex functions psin=-n*(z),
chin=,n(z) and dpic(mx)L+n(mx)=-n(z)-
i,n(z) versus x, for z=mx, n=10 and
m=40+39i, using a logarithmic y axis,
ignoring negative function values.

Figure A1b (left below):
The ratios Dn=-n’(z)/-n(z),
Dnch=,n’(z)/,n(z) versus x, for z=mx,
n=10 and m=40+39i, using a linear y
axis. These functions converge towards
0–i for increasing x, and they diverge
for x/0.
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Detail to Fig. A1b for x= 0.05 to 0.25
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Figure A1c (left):
The inverted product
En(z)=1/[-n(z),n(z)], versus x, for z=mx,
n=10 and m=40+39i, using a
logarithmic y axis, ignoring negative
function values.
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Figure A2a (left):
The complex functions psin=-n*(z),
chin=,n(z) and dpic(mx)L+n(mx)=-n(z)-
i,n(z) versus x, for z=mx, n=10 and
m=2+i, using a logarithmic y axis,
ignoring negative function values.
Whereas -n(z) only diverges for large
x, ,n(z) also diverges for x/0.
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Figure A2b:
The ratios Dn=-n’(z)/-n(z),
Dnch=,n’(z)/,n(z) versus x, for z=mx,
n=10 and m=2+i, using a linear y axis.
These functions converge towards  0–i
for increasing x, and they diverge for
x/0.
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Figure A2c:
The inverted product
En(z)=1/[-n(z),n(z)], versus x, for z=mx,
n=10 and m=2+i, using a logarithmic y
axis, ignoring negative function values.
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Figure A3a (left):
The complex functions psin=-n*(z) and
chin=,n(z) versus x, for z=mx, n=10 and
m=2+0.09i.
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Figure A3b:
The ratios Dn=-n’(z)/-n(z),
Dnch=,n’(z)/,n(z) versus x, for z=mx,
n=10 and m=2+0.09i.
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Figure A3c:
The inverted product
En(z)=1/[-n(z),n(z)], versus x, for z=mx,
n=10, and m=2+0.09i.
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Riccati-Bessel Functions of Order n=10, for m=2+0i
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Figure A4a (left):
The functions psin=-n*(z), chin=,n(z)
versus x, for z=mx, n=10 and m=2;
These are real, undamped oscillations,
similar to sine and cosine functions
(imaginary parts are zero for real m).

Figure A4b (left, below):
The ratios Dn=-n’(z)/-n(z),
Dnch=,n’(z)/,n(z) versus x, for z=mx,
n=10 and m=2+0.009i.
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Detail to Figure A4b, here for x=6 to 10,
but with m=2+0.001i:
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Logarithmic Derivatives of Riccati-Bessel Functions of Order n=10, for m=2+0.0001i
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Inverse product of Riccati-Bessel Functions of Order n=10, for m=2+0.009i
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Figure A4c (left):
The inverted product
En(z)=1/[-n(z),n(z)], versus x, for z=mx,
n=10 and m=2+0.009i.
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Riccati-Bessel Functions of Order n=10, for m=2+-0.09i
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Figure A5a (left):
The complex functions psin=-n*(z),
chin=,n(z) versus x, for z=mx, n=10 and
m=2-0.09i  (meaning amplification).
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Figure A5b (left):
The ratios Dn=-n’(z)/-n(z),
Dnch=,n’(z)/,n(z) versus x, for z=mx,
n=10 and m=2-0.09i.
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Figure A5c (left):
The inverted product
En(z)=1/[-n(z),n(z)], versus x, for z=mx,
n=10 and
m=2-0.09i.


