Kirchhoff’s Law
Many people have a problem getting their head around Kirchhoff’s Law, which states that the absorptivity of a body has to equal its emissivity at every wavelength ( = ). They don’t have a problem that, when spectrally averaged, the two have to yield energy balance.  They don’t get why they have to be equal at each wavelength. 

The classical argument begins with considering a body placed in a blackbody cavity at temperature T.  Energy balance for the body requires that it emits as much energy as it absorbs, and thus doesn’t heat up or cool down.  That is,
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where the integral is over all wavelengths, and represents an average over the whole surface of the body in the cavity.  This basically says that the Planck-weighted average absorptivity equals the Planck-weighted average emissivity, 
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The contrarian’s argument goes:  “If the average emissivity equals the average absorptivity, then we still have energy balance… Why does it have to be in balance at each individual wavelength?  Can’t you absorb a little more at one wavelength and then emit a little more at another and still be in equilibrium?”

The answer is “Not if the system is in thermodynamic equilibrium.”  But the explanations in the text are neither completely satisfying to me nor general, nor do they emphasize the key insights Kirchhoff started with.  The key insights are:
1) Thermo requires that, over time, the body must acquire the same temperature as the cavity.
2) Thermo also requires that if they are at the same temperature, the net energy flowing into the body equals that flowing out (this is what we already asserted above).
3) The emission by the body is only a function of its temperature – not a function of the incoming radiation.  Thus if the body is at the same temperature T outside the cavity, it will still emit the same amount of radiation at the same wavelengths as it does inside the cavity. Similarly, the absorptivity, , is solely a function of its temperature, not of its environment.  
The third insight may sound innocuous, but ends up resulting in the very specific requirement that  = ., as opposed to the less strict 
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These three rules (and the cavity assumption) define a condition called “Thermodynamic Equilibrium” (TE) in which the energetic properties of a space are entirely determined by a single temperature T.  That includes radiation, molecular velocities, (and if you carry it to extremes, chemical states).  In its purest sense, TE requires that any irreversible process in that space has run its course.  The matter and radiation that passes into the space is identical to the matter and radiation that passes out of it.  It basically resembles the inside of a cavity.
To understand what TE really is, it’s useful to consider what it is NOT.  Consider the difference between a parcel of air in the atmosphere having temperature T, and that same parcel enclosed within a cavity whose walls are at temperature T, and for which any irreversible process has run its course.  The first key difference is that during the daytime the atmosphere is bombarded by high energy solar photons that simply wouldn’t be there in a cavity at atmospheric temperature.  When these photons are absorbed, the absorbing molecules are raised to “excited states” that they wouldn’t achieve without all those high frequency photons around.  If these excited states emit photons back, those photons will be higher energy than would normally be emitted by those molecules at that temperature.  Thus the “emissivity” at short wavelengths will be greater than one.  Second, there will be short-lived, photochemically produced species lying around that simply shouldn’t be there at atmospheric temperatures but exist only because of the high-energy photochemical precursors.  
In the atmosphere, we assume “Local Thermodynamic Equilibrium” LTE, which is a little less strict than true TE.  We can do this because the collisions among molecules in the troposphere and stratosphere are so frequent that an “excited state” doesn’t exist long enough to make the molecular state distribution look significantly out of whack.  Basically, all the solar radiation absorbed by these molecules is rapidly dissipated into thermal energy through these collisions, and the molecules don’t remain in the excited state long enough to emit radiation at the higher-than expected frequencies.  As far as the presence of photochemical species – rapid collisions also “quench” these down to atmospheric temperatures quickly.  So we don’t want to be too strict with LTE, we can just treat those species as if they “belong”, as long as they are predominantly have the same velocities and energy states (vibration, rotation, electrical configuration) as you’d expect at temperature T.
OK now with these assumptions, we’re in a position to demonstrate Kirchhoff’s law.  Let’s consider the inside of a cavity with walls made of a material of some absorptivity and emissivity   and .  We place inside this cavity a large body with a different absorptivity and emissivity   and .  Let’s consider the average radiation exchange at a specific frequency  for the space between the objects.  The average spectral flux towards the inner body is given by
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This is just saying that the flux coming into the inner body is equal to whatever is emitted by the cavity walls plus whatever is reflected by those walls.  The radiation available for reflection is just that flowing away from the inner body, which is given by the corresponding equation,
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(Note that the reflectivity = 1 – absorptivity because the cavity walls have to reflect everything that they don’t absorb or transmit, and we are asserting that the cavity walls are thick (i.e. opaque – no transmission).).  These equations don’t state an energy balance for the inner and outer bodies.  They just keep track of the photons as they are emitted, absorbed, and reflected by the inner and outer boundaries.  You can solve these two equations for the two unknowns to get:
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NOW it’s time to implement energy balance.  Here we say that
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Using the relations obtained above, we end up with
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Combining the integrals and cancelling terms yields,
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Consider the blackbody case, when   =  = 1.  This just reproduces the condition that 
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, which we showed on the 1st page of this discussion.  But here we’ve added the wrinkle by considering what happens if you make the cavity out of a non-blackbody substance where   and   < 1.  It is convenient to rearrange things into:
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For this integral to be zero, we need the terms in parentheses to balance.  Remember we started by saying that   and  are completely arbitrary.  They can have any spectral shape whatsoever.  Since we can’t make  a function of   or  or vice versa (it cannot change emissivity in response to some other object), we'll have to assert that   =  and   =   for all .  There’s no other way.  (You could also say that  = c  where c is the same for all substances.  But, by our definitions of   and FBB, we implicitly have 
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So now we’ve proved Kirchhoff’s law.  Plugging this identity in, we end up with
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which basically says that the radiation field inside a cavity is totally independent of the properties of the walls of the cavity or the objects within it.  It always approaches the blackbody solution.  That’s why the inside of a cavity works well as a blackbody.  If you poke a small hole in it, what comes out is basically blackbody radiation – insensitive to the absorbtivity or emissivity of the material the cavity is made of.
You can take this one step further and consider that the reflectivity and absorptivity are also functions of the direction of radiation.  If you’re clever, you can expand the above arguments using IBB instead of FBB, and then show that IBB is the same for all directions – Blackbody radiation is isotropic.  One way to do this is to consider variations in the shapes of the cavity and enclosed body and consider what would happen if BB radiation weren’t isotropic.  The REAL proof for Kirchhoff’s laws comes from principles of reversibility in Quantum Mechanics, which are used to set up the LTE conditions in the first place.
Final parting words – Kirchhoff’s law only applies if you’re in LTE.  Outside of LTE, it won’t .  If you’re in LTE but not true TE (like the daytime atmosphere), your incoming radiation won’t necessarily match the Planck curve for the temperature you’re at.  This means that – even though Kirchoff’s law works – you can heat or cool radiatively due to the different spectral region that you’re absorbing in compared to the Planck curve at your ambient temperature.  So don’t be fooled into thinking that LTE means you aren’t heating or cooling – it only means that the distributions of your molecules’ thermal states (electronic, vibrational, rotational, kinetic) are well characterized by the appropriate Boltzmann distribution for a single temperature, and thus have the expected absorptivity and emissivity for that temperature.
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