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Specific Heat or Heat Capacity 

 

When energy is added to a material, it can be divided in various ways (see figure below).   

• Some may go into the bulk energy of the substance like the acceleration of a rocket’s 

exhaust gas.   

• Some may go into doing work on the surroundings if the material expands.   

• Some may go into internal energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of the internal energy, 

• Some goes into translational kinetic energy which results in a rise in temperature 

• Some goes into the excitation of the atoms and molecules of the material 

Excitation includes molecular rotation, molecular vibration and at high enough temperatures, 

dissociation of molecules and ionization. 

 

Definition: The specific heat of a material is the amount of heat that must be added to a unit 

mass of material to raise its temperature by 1 degree.   

 

The symbol for specific heat is C.  It is either at constant volume, CV, or constant pressure, 

CP.  We will learn about the distinction between these two shortly.  In mks, the units of specific 

heat are joules per kg per Kelvin, J kg
-1

 K
-1

. 

 

 Q = C M T  

The amount of heat required to raise the temperature of a mass, M, through a temperature 

interval, T, is equal to the product of at the specific heat of the material, its mass and the 

temperature interval. 

At normal temperatures, the specific heat of water is 1 calorie/gram °C = 4.186 joule/gram 

°C = 4,186 J/kg/K which is higher than any other common substance.  As a result, water plays a 

very important role in temperature regulation.  In fact the oceans are the heat sink that will take a 

long time to heat up because of global warming due to the imbalance in radiation de to increased 

greenhouse gases (GHG) in Earth’s atmosphere.  Once the oceans are heated up it will also take 

a long time to cool them off if the original GHG concentrations were ever achieved again.   

Heat added 

Work done on 

surroundings 

Bulk energy: 

system as a whole 

accelerates or 

changes its 

potential energy 

Internal energy: 

• Translational kinetic energy of the molecules 

• Rotation and vibration of the molecules 

• Electronic excitation and ionization   
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Raising 1 kg of water by 1°C requires 4,186 joules of heat (energy) to be added to the water.  

Using a 100 watt heat source, it would take about 42 seconds to increase the temperature of the 1 

kg of water by 1°C. 

 

Molar specific heat 

Molar specific heat is defined as the heat required to raise the temperature of 1 mole of a 

substance by 1K.  Its units are J/mole/K.  We will use the designation, C’, to refer to molar 

specific heat.  From a units analysis 

 C’ = C m 

where m is the molar weight or mass in kg (or grams) per mole. 

It is easier to understand the physics of specific heats using molar specific heats.  In practice, 

since the mass of an object is an easier quantity to determine than the number of moles in an 

object, the mass form of the specific heat is typically used when performing actual calculations. 

 

Equipartition Theorem and Modes of excitation 

When an object or substance is in equilibrium, its internal energy is distributed equally 

between its different modes of storing energy.  These are also called degrees of freedom.   

The minimum number of degrees of freedom of an atom or molecule is 3, one for each direction 

of its translational motion: x, y, and z in Cartesian coordinates.   

Additional modes of energy storage of molecules are the rotational, vibrational and electronic 

modes of excitation.   

• Electronic:   Electron transition between different electron orbits 

• Vibrational: Transitions between different vibrational modes of the molecule. 

• Rotational: Rotation of the molecule around different axes of rotation. 

Each mode or degree of freedom receives or is allocated kBT/2 of energy. 

So when heat is added to an object, the object distributes the energy equally to all of the 

available degrees of freedom.  The temperature only refers to the translational or kinetic energy.   

So a high molar specific heat means the material has many modes of storing energy 

beyond just translational or kinetic energy.   

 

We will talk about specific heat at constant volume first and then discuss the modification to 

understand the constant pressure version by applying the work concept 

 

 

Monatomic gas 

The easiest specific heat to understand is that of the monatomic gas.  Monatomic gases are 

gases made up of single atoms that don’t bond easily with other atoms of the same kind.  The 

obvious examples are the noble gases, He, Ne, Ar, Kr, Xe and Rn.   Their internal energy at 

Earth’s temperatures is distributed as follows 

• A monatomic gas has the 3 kinetic energy modes associated with translational motion in 

the x, y and z directions. 

• A monatomic gas has no vibrational modes.   

• Because of its very small moment of inertia, its rotational modes have very high energies, 

much higher than the thermal energies of Earth temperatures.  Therefore, except for the 

ground state, these rotational energy levels are not populated.   
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So the only energy modes that are populated are the 3 translational modes.  The molar specific 

heat at constant volume of atomic gases is therefore CV’ = CV,m = 3/2 R* and the mass specific 

heat of atomic gases is CV = 3/2 R*/m where m is the molar mass in kg/mole.  The following 

table shows values of specific heats at constant volume for monatomic gases.  

 

 

Monatomic gas CV,m (J/K/mol) CV,m /(R/2) CV (J/K/kg) 
He 12.5 3.00 3,125 

Ne 12.5 3.00 619 

Ar 12.5 3.00 313 

Kr 12.5 3.00 149 

Xe 12.5 3.00 95 

Note that when looking up specific heats, one must be careful whether one is looking at a CV or a 

Cp.  Most gases are given in terms of Cp which we have not yet discussed. 

 

Clearly the simple theory of energy equal to kBT/2 per degree of freedom per molecule works 

very well in this case. 

 

Specific Heat of Molecules 

Molecules (which to state the obvious have at least 2 atoms) are clearly more complicated 

than atoms because they have both rotational and vibrational modes.  Therefore, the molar 

specific heats of gases of molecules will be systematically higher than those of monatomic gases 

and more heat will be required per mole to raise their temperature than for monatomic gases.  

A key point before going farther is the accessibility of these energy modes given the 

magnitude of thermal energies available as defined by the temperature.  This has to do with the 

Boltzmann distribution which states the probability that a given energy level of a system is 

populated at a temperature, T. 

 

 

Boltzmann Distribution 

The Boltzmann distribution defines how the various energy states of a system are populated 

given that the system has a well defined temperature, T.  According to the Boltzmann 

distribution, given a total number of particles, N, occupying a set of states, the number of 

particles Ni occupying the states with energy = Ei or equivalently having an energy, Ei, is given 

by 

 
Ni

N
=
gie

Ei kBT

Z T( )
 

where gi is the degeneracy which is the number of states having energy Ei, and N is the total 

number of particles 

 N = Ni  

and Z(T) is called the partition function, which is equal to 

 Z T( ) = gie
Ei kBT  
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For a given single system, this fraction, Ni/N, gives the probability that the system is in the 

specified state.  The Boltzmann distribution applies only to particles at a high enough 

temperature and low enough density that quantum effects can be ignored, and the particles are 

obeying Maxwell–Boltzmann statistics.  

In the current context, the Boltzmann distribution is important because it tells us the 

likelihood that a given rotational or vibrational or electronic state is occupied.  If the energy of a 

particular state is very high in comparison to available thermal energies, such that the probability 

or likelihood that a given state is occupied is very low according to the Boltzmann distribution, 

then that state will not contribute to the specific heat of the material and can be ignored.  We now 

need to estimate the energies of the rotational and vibrational modes and compare them with the 

thermal energies to determine which sets of states need to be counted in the degrees of freedom. 

 

 
Note:  1 eV = 1.60219 J 

kB = 1.3806e-23 J/K = 8.617e-5 eV/K 

 

So, for scale, T= 300 K => kB T = 0.0258 eV.  This corresponds to wavelengths of 50 microns in 

the figure above. 
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Diatomic gases (the next easiest case) 

Diatomic molecules are the easiest gas particles after the monatomic gas.  The typical value 

given for the molar specific heat at constant volume for a diatomic molecule is approximately 

5/2 R*, the rationale for which we will now try to understand. 

Consider the rotational and vibrational modes of a diatomic molecule thinking in terms of a 

simple dumbbell model. 

 

 

 

 

 

 

Define the x direction as along the line between the molecules in the figure, the y direction as up 

in the plane of the paper and the z direction as being out of the paper.  There are 3 rotational 

modes defined as rotation about each of the 3 axes: x, y and z.  Rotation around the y and z axes 

are very similar and have the same moments of inertia, I=mr
2
.  Rotation about the x-axis differs 

from the other two because the moment of inertia is much smaller because the distance from the 

mass to the spin axis is much smaller.   This distinction is very important because the quantum 

rotational energy levels of a dumbbell are inversely proportional to I. 

 

Rotational energy levels 

In the simple 2 atom dumbbell molecule, the rotational energy levels are  

 E j =
h2

8 2I
j j +1( )  

where h is Planck’s constant, 6.6x10
-34

 J s, j is the rotational quantum number, 0, 1, 2,… and I is 

the moment of inertia:  

 I = r2 dV  

where  is the mass density, V is volume and r is distance of the mass element from the spin axis. 

[Units check:  J
2
 s

2
/(kg m

2
) = J

2
/J = J   OK] 

In the simple dumbbell model, for the rotation around the y and z axes, the two atoms can be 

considered as 2 point masses so the moment of inertia is straight forward to calculate.   

• First one finds the location of the center of mass (which is the spin axis): 

 r =
r( )rdV

r( )dV
=

miri

mi

 

where the first form is for continuously distributed mass and the second is the discrete 

form when there are a finite number of masses.  

• Then one calculates the moment of inertia (where r is now defined relative to the center 

of mass) 

 I = r2 dV = miri
2  

x 

y 

z 
.
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Then one plugs this value of the moment of inertia into the rotational energy equation above and 

finds the rotational energy levels, Ej.  The following table shows the first few energy levels (in 

eV) for several diatomic molecules.   

 

 

j H2 N2 O2 Br2 
0 0 0 0 0 

1 1.53E-02 1.09E-03 9.54E-04 1.91E-04 

2 4.58E-02 3.27E-03 2.86E-03 5.73E-04 

3 9.16E-02 6.54E-03 5.73E-03 1.15E-03 

4 1.53E-01 1.09E-02 9.54E-03 1.91E-03 

5 2.29E-01 1.64E-02 1.43E-02 2.87E-03 

 

The next table shows the same information converted to temperatures by dividing by kB in eV/K 

 

j H2 N2 O2 Br2 
0 0 0 0 0 

1 177.18 12.66 11.07 2.22 

2 531.55 37.97 33.22 6.65 

3 1063.10 75.94 66.44 13.31 

4 1771.83 126.56 110.74 22.18 

5 2657.74 189.84 166.11 33.26 

 

• What this shows is for typical temperatures encountered on Earth, many rotational states 

will be populated according to the Boltzmann distribution (which assumes the system has 

a well defined temperature).   

• It also shows that the heavier diatomic molecules have lower energy rotational states 

because the moment of inertia is larger because the mass of the atoms involved is higher. 

 

 

Vibrational energy modes and levels 

 The vibrational energy modes are thought of involving springs between the atoms.  In the 

diatomic case, simplistically there is one spring between the two atoms.  This is a simple 

harmonic oscillator defined as 

 F = kx = μ
d2x

dt 2
 

The solution is of the form 

 x = asin
k

μ
t +

 

 
 

 

 
 = ae

i
k

μ
t+

 

 
 

 

 
 

 

Combining this concept with quantum mechanics leads to a discrete set of energy levels defined 

as 

 En = n +
1

2

 

 
 

 

 
 
1

2

k

μ
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where μ is the reduced mass: 

 
1

μ
=
1

m1
+
1

m2

 

and m1 and m2 are the masses of the atoms at the ends of the spring.  Note that the stronger the 

spring, the higher the spring constant, k, and the higher the energy levels.  The more massive the 

atoms, the lower the energy levels.   

 

  H2 CO NO N2 HI Cl2 HCl Br2 O2  

k  1000 1860 1530 1695 320 1000 1000 1000 930 N/m 

m  0.50 6.86 7.47 7.47 0.99 17.73 0.97 39.95 8 amu 

m  8.33E-28 1.14E-26 1.24E-26 1.24E-26 1.65E-27 2.95E-26 1.62E-27 6.66E-26 1.33E-26 kg 

freq  1.74E+14 6.42E+13 5.58E+13 5.87E+13 7.00E+13 2.93E+13 1.25E+14 1.95E+13 4.20E+13 Hz 

DE  1.16E-19 4.25E-20 3.70E-20 3.89E-20 4.64E-20 1.94E-20 8.28E-20 1.29E-20 2.79E-20 J 

DT1 1 16743 6166 5359 5641 6723 2812 12005 1873 4037 K 

DT2 2 50228 18498 16077 16922 20170 8436 36014 5619 12110 K 

DT3 3 83714 30829 26796 28203 33617 14060 60024 9365 20183 K 

  1 1 1 1 1 1 1 1 1  

  6.76E-59 3.78E-22 2.40E-19 2.52E-20 4.37E-24 1.70E-10 1.96E-42 3.11E-07 9.46E-15  

  4.6E-117 1.43E-43 5.77E-38 6.37E-40 1.91E-47 2.89E-20 3.83E-84 9.65E-14 8.94E-29  

 

The last 3 columns show the Boltzmann distribution probabilities 

 

The point is that the vibrational energy levels are significantly higher than the rotational energuy 

levels and not nearly as populated as the rotational levels.  Therefore, for a given molecule, the 

specific heat may not include the contribution of the vibrational energy levels. 

 

 H2 N2 O2 Cl2 Br2 

Cp,m 28.84 29.12 29.38 34.03  

Cp,m/(R*/2) 6.94 7.005 7.07 8.19  

CV,m 20.18 19.9 21.07 24.1 32 

CV,m/(R*/2) 4.85 4.79 5.07 5.80 7.70 
Notice that Br2 & Cl2 have the lowest & 2

nd
 lowest vibrational energy levels and have the highest 

molar specific heats consistent with the idea that their vibrational levels are populated 

 

SUMMARY 

To understand which of these modes get excited at commonly experienced temperatures, we 

need to compare the thermal energy range to the range of energies of the rotational and 

vibrational modes. 

So thermal energies typically encountered on Earth are comparable to rotational energy 

levels and the lower portion of vibrational energy levels of many molecules but well below 

electronic energy levels.  So for typical conditions found on Earth, the specific heat will depend 

on the rotational and vibrational energy levels of the molecules but not their electronic energy 

levels or modes.   


