

Chapter 4. Particle Size Statistics

Read:

- Chapter 4
- Handouts

Background:

- Monodisperse (or quasi-monodisperse) size distributions ($D_p \approx const.$)
 - o useful theoretical construct
 - o applicable to certain synthetic aerosol samples, e.g., latex beads
 - o few natural aerosols, except clouds, perhaps
- Polydisperse size distribution
 - o represents most natural aerosols
 - often a long tail shows up in distribution, i.e., D_p is not normally distributed around a mean D_p.
- Aerosols often assumed to be spherical; corrections can be made for nonspherical particles, e.g., fibers, cubic crystals.
- Wide range in D_p and in number conc. requires statistical description, e.g., water dimer (2 molecules) $10^{-3} \mu m$ to rain drop $10^{3} \mu m$ (see Fig 1.6, 1.7).
- Simple presentation of "mers" in histogram intellectually appealing, accounting for all matter discretely but it is impractical:
 - o enormous count
 - impossible to verify by measurement
 - continually evolving
- Instead, represent amount of matter by D_p range on x-axis. On y-axis use a number concentration to yield an aerosol number distribution where near-infinite # of "mers" is reduced to just 11 bins in the example (Table 4.1; Fig 4:1).
- •Deal with unequal bin widths (often caused by real measurement techniques) by normalizing number concentration for D_p -range, i.e., n (#/cm³/µm) = ΔN (#/cm³)/ ΔD_p (µm).
- Fig 4.2; note Hinds calls #/cm³ as "frequency" not everyone else does.
- As a step to further distilling the information in the size distribution we prepare ourselves for a continuous aerosol number distribution by reducing the bin width from ΔD_p to dD_p . Then an important definition emerges naturally (Seinfeld and Pandis handout):

dn = # particles/cm³ in size range D_p to D_p + dD_p or dn = dN/dD_p (see above)

- Finally, advance from 11 points on n vs. D_p graph to a continuous function that approximates a best fit through some or all of the points using just 2 parameters. In practice, for natural aerosols experience shows two useful functions can be used to represent entire distribution using first two constants.
 - 1. Junge distribution, also called the power law distribution
 - 2. \log_{e} normal distribution
- Junge distribution
 - $n = dN/d(logD_p) = C/D_p^{\alpha}$

(eq 4.6.2)

where C, α = constants to be experimentally determined, e.g., log/log plot yields a st. line with slope $-\alpha$; and C got from value of n at D_p = 1 μ m

- Valid only for small D_p range e.g. 1 = order magnitude.
- Small deviations of straight line approximation from true number distribution greatly magnified when n_N converted to n_S, n_V or n_M. (Wallace & Hobbs, Seinfeld & Pandis handouts)
- Log normal distribution
 - Assumes that (In D_p) is normally distributed. Note subtle, but important distinction between a distribution of (In D_p)'s and a distribution of D_p's plotted on a In-axis. (see Hinds e.g. 4.41, 4.42)
 - log normal distribution represented by two constants, σ_g and mean D_p, both of which are obtained easily from a straight line log-probability plot (Fig 4.12; e.g., 4.49 4.46)
- Hatch Choate Equations
 - Often need to convert from number distribution to mass distribution: easily done if it's log–normal. Use Hatch – Choate .eq. 4.47 and Table 4.2

e.g. mass $\propto D_p^{-3}$, i.e., moment, b = 3

so, MMD = CMD exp (3
$$\ln^2 \sigma_q$$
)

 $CMD = count medium diameter, i.e., D_p where 50\% number conc. distribution is above/below.$

MMD = mass median diam., i.e., $D_{\rm p}$ where 50% of mass conc. distribution is above/below

 σ_{g} = geometric std. deviation (doesn't change)

(See Fig 4.15; see worked examples Q 4.1, 4.5