1. Kinetic Theory of Gases

This is a statistical treatment of the large ensemble of molecules that make up a
gas. We had expressed the ideal gas law as:

pV =nRT (1)
where n is the number of moles. We can also express it as:
pV = NET 2)

where N is the number of molecules and k is Boltzmann’s constant k = R/N, ~
1.381 x 1078 J/K.

A volume of air the size of a birthday balloon contains some 10%* molecules.
The very large number of molecules allows us to treat gases using statistics, in
which averages of quantities such as speed appear rather than their values for
individual molecules.

2. Pressure and Molecular Motion

Consider a container of dilute gas that consists of N independent molecules each
of mass m. Pressure is due to molecular collisions with the walls of the container.
We need to calculate the average rate of momentum transfer. Suppose we have a
container in thermal equilibrium at temperature 7" with volume V. The molecules
are moving in random directions and the average velocity of the molecules is zero
(as many are moving in one direction as the other). (v) =0

(V) = (vy) = (v2) (3)

While the average velocity is zero, the average speed is not zero. We will con-
centrate on \/(v?) which is the root mean square (rms) speed.

The internal energy U consists mainly of the kinetic energies of the molecules
SO

7= () =N (Gmie?) @



where (K) is the average kinetic energy per molecule and N is the total num-
ber of molecules. The average of a sum of terms is the sum of the averages of
those terms so

(*) = (U2 + 02 +02) = (V2) + (v)) + (v2) (5)
(V2) = (v2) = (v2) (6)

So we can relate the average of the components of the velocity squared to the
thermal energy of the gas:

(v*) = 3(v2) 7
oy _ 1,0 2 U
() =507 =57 ®

2a. The Origin of Pressure

Pressure arises from the multiple collisions the molecules of a gas have with the
walls that contain the gas. First we compute the momentum transfer to a wall due
to a single collision, and then find the number of molecules that strike the wall per
unit time. A molecule colliding elastically with the right-hand wall of a box, only
the x-component of velocity changes so the velocity before collision is:

0} = Vgl + v, + vk )
the velocity after collision is:

Uy = —vg0 + U?ﬁ + vzl% (10)

The momentum change of the molecule Aﬁmal is

~

Aﬁmol = MUy — MU; = —2Mugl (11)

and the momentum transfer to the wall is

AP = 2mu,i (12)

The number of collisions with the wall that occur per unit time is calculated as
follows. Consider the number of molecules that with an x-component velocity v,



that strike an area A in a time interval dt is the number of molecules contained in
an imaginary cylinder whose base is against the wall of area A and length v, dt. If
the number of molecules per unit volume is N/V, the total number of molecules
in the cylinder is (N/V (v,dt)A and the number of collisions in time dt will be
half this number as 1/2 of the molecules are moving to the right and 1/2 to the
left.

1IN
N., = -— A 1
coll 2V (Ua:dt) ( 3)
We can multiply this by the individual collision momentum transfer to find the

momentum d P, transferred in time dt.

1N N
P, = (2 - Al = 2 A 14
dP, = (2muv,) (2 v (v.dt) ) MUy dt (14)
The force exerted on the area A is
dP N
I —F = 2 A 1
7 » = Mmuj v (15)

and the pressure on the wall p is the force per unit area

F, N
p=t=miy (16)
Finally, recall that we have employed the average x-component of velocity
squared for each molecule. We make this explicit by employing the notation (v?)

and find
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pv = U (18)

This is an important derivation, as we have used the microscopic properties of
a gas to find a relation between macroscopic thermodynamic variables.

2b. The Meaning of Temperature

The fact that the energy is the sum of the kinetic energy of all the molecules
U = M, (v?), and the fact that energy is related to pressure U = (3/2)pV
provides a link to temperature.



3 3
U= §nRT = §Nk:T (19)
to give the microscopic interpretation of temperature:

20 2
KT =-— =Z2(K 20
a3 = 30 0)
The temperature of an ideal gas is a measure of the average kinetic energy of
the constituents. Because the number of molecules canceled, 7" is independent of

the amount of gas.

note: absolute zero in the Kelvin scale is the point at which the pressure drops
to zero. In the microscopic view of an ideal gas, the temperature is zero when
the average kinetic energy of the ideal gas is zero. Pressure vanished because the
molecules no longer mover around and bounce against the walls.

2c¢. Specific Heat of the Perfect Gas

We will consider the energy and specific heat at vanishing density (perfect gases).
The energy of the molecules of a gas can be divided into:

1. Translatory kinetic energy
2. Rotational kinetic energy
3. Energy of vibration of atoms relative to center of mass of whole molecule

4. Mutual potential energy (not relevant for ideal gasses)

i. Equipartition The total average energy per molecule depends on how many
independent motions a molecule can have.

Point mass Energy has three terms propotional to v7,v. and v?

Diatomic With rotational inertia about axes = and y we have two new terms in
the energy (making it five).

Vibration Brings two more terms related to the relative speed of the atomic con-
stituents and separation (making it seven).



Every term in the energy expression that is quadrati in an independent dynam-
ical variable designates a degree of freedom. The contribution of each degree of
freedom to the average energy of a molecule is kT /2. This is the equipartition
theorem.

(E) = gkrT 1)

and E can contain contributions associated with translation, rotation and vi-
bration.

Translatory Energy U = U, and in specific quantities u = u, = 3kT = 3RT.
This is exactly the same as the example we had done above.

3
u = §RT (22)

3
. = —-R 23
c 5 (23)
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cp = R+CUI§R (24)
Y = &fcy=5/3 (25)

Helium, Neon Argon, Krypton, Xenon.

Rotational Energy For two atoms rigidly united we have two more degrees of
freedom u = u; + u, = SkT = 2RT

u = gRT (26)
5
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Cy 2R (27

¢p = R4c,= gR (28)

v o= ¢fe,=T/5 (29)

Hy, HCI, Ny, CO, Oy, NO

For three atoms rigidly united we have three more degrees of freedom u =



uy +u, = 3KT = 3RT

u = 3RT (30)
¢ = 3R (31)
¢p = R+4c,=4R (32)
v o= ¢/, =4/3 (33)

However, classical theory breaks down for this.

Vibration For the temperatures of our atmosphere, we will not deal with this.

2d. Velocity Distribution of Gases

We define the velocity distribution function F(¢) as the probability distribution
for the velocities of the gas molecules. The probability of finding any particular
velocity ¥ is zero, so we start with a number distribution N (%) such that N (v)d3v=
number of molecules between ¢ and ¥ + dv' and d®v = dvydv,duv,.

The total number of molecules is /N so that

/ N(¥)d*v = N (34)
The probability distribution F'(¥) = + N (7), is defined such that F'(?)dv=is

the probability that a gas molecule velocity is between ¢ and ¥ + dv. From here
we can calculate the average velocity squared:

(v*) = / V2 F(0)d*v (35)

To determine F'(¢') we make the assumption that any way in which a gas’s total
energy and total momentum (which is zero) can be shared among the molecules is
equally likely. When this is assumed, the distribution function is found to be:

m 3/2 2
=\ — —muv?/2kT
o ()



3. Collisions and Transport Phenomena

Molecules follow a tortuous path in their container, colliding with one another and
the walls. At STP an air molecule undergoes billions of collisions per second, but
the average distance a molecule travels between collisions is a statistical quantity
that can be calculated. By these collisions, molecules can carry thermal energy,
odor, etc. The movement of molecules by random collisions is called diffusion.
Molecules of diameter D collide when the path of the center of one molecule lies
within an area wD? presented by the second molecule. The area is the collision
cross section 0. ¢ = wD?.

A molecule that moves with speed v and sweeps out an area ¢ sweeps out
a volume V = od = ovt in a time t. However, the molecule is not alone and
encounters NV collisions, but even if the path is bent, the volume V' remains un-
changed. There are on average a collision every 7 = t/N seconds. 7 is the mean
collision time. Averaging over many molecules we replace v with v,.,.

t ot t 1
T=— = (37)

N nV  novepmdt NoUpms

where n = N/V is the number density (not the number of moles). A more
precise calculation takes into account the fact that the other molecules are also
moving

1

V20000,

The average distance that a molecule travels before it is involved in a collision
is the mean free path \ where

T (38)

1
V2no

A is inversely proportional to both the density and the collision cross section.

(39)

A= TUppps =

3a. Random Walk and Diffusion

Molecules move through a gas by diffusion. The average distance moved by a
molecule is similar to the random walk problem (or drunkard’s walk). In this
problem, a drunkard starts at a lamppost and takes steps that are equal in length but
random in direction. We can find the average displacement of the molecule after



N steps as follows. Let the successive displacements be El, Ls...L, all of random
directions but magnitude L. After N steps the displacement of the molecule is
Ry = L1+ Ly + ... + L,,. Squaring this quantity we have:

R =1} +I12+ . . +L%+2L1-Lo+20y-Ly+ ...+ 20y - Ly  (40)

In the averaging process, all the dot products have an average value over time
of zero, whereas the squared terms are equal to L?.

(RY) = NL? 41)
Connecting this with the properties of a gas. L? = )2, after NV steps the time
ist=1N
2 o
(r) = =A (42)
T

It is typical in random walk problems that the displacement squared is linear
in time or that the displacement is proportional to the square root of the time.



