
1. Droplet Growth by Condensation
It was shown before that a critical size r∗ and saturation ratio S∗ must be ex-
ceeded for a small solution droplet to become a cloud droplet. Before the droplet
reaches the critical size, it grows by diffusion of water molecules from the vapor
onto its surface. The rate of diffusional growth of a single droplet is analyzed
in this section. The droplet has radius r and is located in a vapor field with the
concentration of vapor molecules at distance R from the droplet center denoted
by n(R). We can characterize the vapor field in terms of ρv(R) = n(R)m0 where
m0 denotes the mass of one water molecule. We assume isotropy so that n(R)
doesn’t depend on direction. At any point in the vapor field, the concentration of
molecules is assumed to satisfy the diffusion equation:

∂n

∂t
= D∆2n (1)

Using the divergence in polar coordinates, and obtaining the expression for
steady-state conditions:

D∆2n(R) = 0 =
1

R2

∂

∂R

(
R2 ∂n

∂R

)
(2)

Which has a general solution n(R) = C1 − C2/R with boundary conditions:

• R → ∞ and n → sn∞, the ambient or undisturbed value of vapor concen-
tration,

• R→ r and n→ nr, the vapor concentration at the droplet’s surface.

We get the solution:

n(R) = n∞ −
r

R
(n∞ − nr) (3)

1a. Growth of mass by Conensation

The flux of molecules onto the surface of the droplet is D(∂n/∂R)R=r, so the rate
of mass increase is:

dm

dt
= 4πr2D

(
∂n

∂R

)
R=r

m0 (4)

So we can obtain the change of mass in time as:
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dm

dt
= 4πrD(n∞ − nr)m0 (5)

dm

dt
= 4πrD(ρv − ρvr) (6)

were ρv is the ambient vapor density and ρvr is the vapor density at the droplet’s
surface.

1b. Latent Heat release

Associated with condensation is the release of latent heat which raises the droplet
temperature above the ambient value. The difusion of heat away from the droplet
is given by

dQ

dt
= 4πrK(Tr − T ) (7)

where T is the ambient temperature and Tr is the temperature at the surface of the
droplet, and K is the coefficient of thermal conductivity of the air.

Condensation of water vapor releases heat ml and the rate of release is l dm
dt

.
The latent heat of condensation is transported by diffusion away from the droplet
(assuming no changes in temperature with time -steady state). We can then derive
the following equation:

dQ

dt
= l

dm

dt
(8)

ρv − ρvr
Tr − T

=
K

Dl
(9)

Here Tr and ρvr are unknown, but we know the expression for the equilibrium
pressure over a droplet:

ρvr =
es‘(r)

RvTr
=
es(Tr)

RvTr

(
1 +

a

r
− b

r3

)
(10)

These two equations can be solved simultaneously for Tr and ρvr, and then
solve for the growth. However, there is a simplified expression for the growth (see
handout for derivation):
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r
dr

dt
=

(S − 1)− a
r

+ b
r3

Fk + Fd
(11)

where S = e/es is te ambient saturation ratio. Fk =
(

l
RvT
− 1
)

lρl
KT

, is the

thermodynamic-heat conduction term. and Fd = ρlRvT
Des(T )

is the vapor diffusion
term. For very large radii:

r
dr

dt
=

(S − 1)

Fk + Fd
(12)

Integrating, we get:

r2(t) = r2(t0) +
2(S − 1)

Fk + Fd
(t− t0) (13)

This leads to a narrowing of drop size distribution with time. Initially, droplets
that form on large condensation nucleus grow faster, but after a certain radius
they homogenize. We can also use the equation for evaporation and discriminate
between cloud and rain droplets.

2. Collision and Coalescence
Collisions are influenced by gravitational, electrical and aerodynamic forces. Grav-
itational effects dominate in clouds where large droplets capture small ones.

collision efficiency (Ecoll) = (# collisions) / (# encounters in geometric sweep)
coalescence efficiency (Ecoal)= (# coalescences) / (# collisions)
collection efficiency (E) = Ecoll × Ecoal

Theoretical studies generally assume that the E = Ecoll, for a coalescence
efficiency of 1.

2a. Droplet terminal fall speed

i. The drag force on a sphere of radius r is:

FR =
π

2
r2u2ρCD (14)
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u is the velocity of the sphere relative to the fluid. ρ is the fluid density and CD is
the drag coefficient. In terms of the Reynolds number Re = 2ρur

µ
, where µ is the

dynamic viscosity. The Reynolds number is a non-dimensional ratio of inertial to
viscous forces.

FR =
πµruCDRe

4
(15)

ii. The gravitational force minus buoyancy on a sphere of radius r is:

FA =
4

3
πr3g(ρl − ρ) (16)

iii. Terminal fall speed occurs when FA = FR

4

3
πr3g(ρl − ρ) =

πµruCDRe

4
(17)

if ρl >> ρ

u2 =
8rgρl
3ρCD

(18)

u =
16r2gρl
3µCDRe

(19)

For very small Reynolds numbers CDRe
24

= 1

u =
2r2gρl

9µ
(20)

For droplets ≈ 30µm, u = k1r
2 . This quadratic dependence of fall speed on

size is called Stoke’s Law. k1 = 1.19× 106s−1cm−1.

For high Reynolds numbers, CD is independent of Re, and CD = 0.45.

u = k2r
1/2 and k2 = 2.2 × 103

(
ρ0
ρ

)1/2
cm1/2s−1. Where ρ is the air density

and ρ0 is a reference density of 1.2kg/m3. The region in between has a linear
relation u = k3r where k3 = 8× 103s−1.
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2b. Collision Efficiency

• A drop of radius R overtaking a drop of radius r.

• An object with zero inertia would be swept aside.

• The relative importance of the balance between inertial and aerodynamic
forces and the separation x between drop centers.

• At a critical distance x0 the droplet makes a grazing collision. At x < x0
the droplet collides.

The effective collision cross section of the collector drop of radius R is [πx20].
The geometric collision cross section [π(R + r)2]

Ecoll(R, r) =
x20

(R + r)2
(21)

if x) < (r+R) not all drops in the geometrical collision cross section will collide
with the collector drop. These calculations are mathematically involved.

• Collision efficiency is small for small r/R

• Increases as r/R increases up to 0.6

• At around 0.6, the radii are similar and relative velocities are small, the flow
fields interact strongly

• at r/R close to 1, there is a ”wake effect” and the efficiency can be greater
than one.

2c. Growth Equations

The drop of radius R is falling at terminal speed through a population of smaller
droplets. the geometric collision volume swept is calculated as:

Vcoll = π(R + r)2[U(R)− u(r)]∆t (22)

The average number of droplets with radii between r and dr is n(r)dr, so the
average number of droplets collected in unit time is:

Ncoll = π(R + r)2[U(R)− u(r)]E(R, r)n(r)dr (23)
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for r = 100µm assume coalescence efficiency =1, so the collection and colli-
sion efficiencies are equal.

The rate of increased volume with time is calculated as the number of droplets
times the volume of droplets integrated over all droplet sizes.

dV

dt
=

∫ R

0

4

3
πr3π(R + r)2[U(R)− u(r)]E(R, r)n(r)dr (24)

We can express it in terms of the radius of the collector drop:

dR

dt
=
π

3

∫ R

0

(R + r)2

R2
[U(R)− u(r)]n(r)r3Edr (25)

If the droplets are much smaller than the collector drop u(r) ≈ 0 and (R+r) ≈
R

dR

dt
=
U(R)EM

4ρl
(26)

Where M = Vlρl is the cloud liquid water and Vl = M
ρl

, E is the effective
average of collision efficiency for droplet population.

U(R) increases as R increases, dR/dt increases with increasing R. For this
reason, at the beginning condensation dominates, but after a certain threshold,
growth by collisions dominates.

2d. Change of drop size with Altitude

The relative speed of the droplet determines the distance traveled:

dz

dt
= U − r(R) (27)

Where U is the updraft speed and u(R) is the fall speed of the drop.

dR

dz
=

EMu(R)

4ρl(U − r(R))
(28)

If U << u(R) then dR
dz

= −EM
4ρl

These equations describe droplet growth as
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a continuous collection process. We can also use it to determine the value of H
(height) for any radius RH . If the radius of the collector drop and any height H
is RH and the radius at cloud base is R0, If we assume M is independent of z
(homogeneous cloud liquid water) - then

H =
4ρl
M

[∫ RH

R0

U

u(R)E
dR−

∫ RH

R0

dR

E

]
(29)

• For small droplets U > u(R) and the first integral dominates and H in-
creases as RH increases so the drop growing by collision is carried upward.

• For U < u(R), H decreases with increasing RH and the drop begins to fall.
Eventually passing through cloud base and reaching the ground if it doesn’t
evaporate along the way.
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