1. Droplet Growth by Condensation

It was shown before that a critical size r* and saturation ratio S* must be ex-
ceeded for a small solution droplet to become a cloud droplet. Before the droplet
reaches the critical size, it grows by diffusion of water molecules from the vapor
onto its surface. The rate of diffusional growth of a single droplet is analyzed
in this section. The droplet has radius r and is located in a vapor field with the
concentration of vapor molecules at distance 1? from the droplet center denoted
by n(R). We can characterize the vapor field in terms of p,(R) = n(R)m, where
mg denotes the mass of one water molecule. We assume isotropy so that n(R)
doesn’t depend on direction. At any point in the vapor field, the concentration of
molecules is assumed to satisfy the diffusion equation:

g—? = DA%n (1)

Using the divergence in polar coordinates, and obtaining the expression for
steady-state conditions:
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Which has a general solution n(R) = C; — C3/ R with boundary conditions:

e R — oo and n — sn., the ambient or undisturbed value of vapor concen-
tration,

e R — r and n — n,, the vapor concentration at the droplet’s surface.

We get the solution:

n(R) = oo — = (New — ) (3)
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la. Growth of mass by Conensation

The flux of molecules onto the surface of the droplet is D(9n/0R)r—,, so the rate
of mass increase is:
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So we can obtain the change of mass in time as:
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were p,, is the ambient vapor density and p,,, is the vapor density at the droplet’s
surface.

1b. Latent Heat release

Associated with condensation is the release of latent heat which raises the droplet
temperature above the ambient value. The difusion of heat away from the droplet
is given by
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where 7’ is the ambient temperature and 7;. is the temperature at the surface of the
droplet, and K is the coefficient of thermal conductivity of the air.

Condensation of water vapor releases heat m/ and the rate of release is ldd—T.
The latent heat of condensation is transported by diffusion away from the droplet
(assuming no changes in temperature with time -steady state). We can then derive
the following equation:
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Here T and p,, are unknown, but we know the expression for the equilibrium
pressure over a droplet:

Por = e (r) _ e(Tr) (1 4+ b) (10)
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These two equations can be solved simultaneously for 7;. and p,,, and then
solve for the growth. However, there is a simplified expression for the growth (see
handout for derivation):
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where S = e/e, is te ambient saturation ratio. Fy = (ﬁ — 1) Il(ﬂT, is the
thermodynamic-heat conduction term. and Fy = % is the vapor diffusion

term. For very large radii:
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Integrating, we get:
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This leads to a narrowing of drop size distribution with time. Initially, droplets
that form on large condensation nucleus grow faster, but after a certain radius
they homogenize. We can also use the equation for evaporation and discriminate
between cloud and rain droplets.

2. Collision and Coalescence

Collisions are influenced by gravitational, electrical and aerodynamic forces. Grav-
itational effects dominate in clouds where large droplets capture small ones.

collision efficiency (E,.;) = (# collisions) / (# encounters in geometric sweep)
coalescence efficiency (FE..q;)= (# coalescences) / (# collisions)

collection efficiency (F) = E.oy X Feoal

Theoretical studies generally assume that the £ = E.,;, for a coalescence
efficiency of 1.

2a. Droplet terminal fall speed

i. The drag force on a sphere of radius r is:

Fp = =r*u*pCp (14)



u is the velocity of the sphere relative to the fluid. p is the fluid density and Cp, is
the drag coefficient. In terms of the Reynolds number Re = Q’Li, where 1 is the
dynamic viscosity. The Reynolds number is a non-dimensional ratio of inertial to

viscous forces.

Fp = 7T,uru40DRe (15)

ii. The gravitational force minus buoyancy on a sphere of radius r is:
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iii. Terminal fall speed occurs when Fy = Fg
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For droplets ~ 30um, | v = ki7*|. This quadratic dependence of fall speed on
size is called Stoke’s Law. k; = 1.19 x 10%s~'em ™!,

For high Reynolds numbers, C'p is independent of Re, and Cp = 0.45.
1/2
w=kyr'/?|and ky = 2.2 x 10 (%J) cm'/?s71. Where p is the air density

and py is a reference density of 1.2kg/m?>. The region in between has a linear

relation where k3 = 8 x 103571,
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2b. Collision Efficiency

e A drop of radius R overtaking a drop of radius 7.
e An object with zero inertia would be swept aside.

e The relative importance of the balance between inertial and aerodynamic
forces and the separation = between drop centers.

e At a critical distance z( the droplet makes a grazing collision. At z < x
the droplet collides.

The effective collision cross section of the collector drop of radius R is [rz2].
The geometric collision cross section [7(R + r)?]

p
(R+1)?

if #y < (7 + R) not all drops in the geometrical collision cross section will collide
with the collector drop. These calculations are mathematically involved.

Eeou(R,r) = 21)

e Collision efficiency is small for small /R
e Increases as /R increases up to 0.6

e At around 0.6, the radii are similar and relative velocities are small, the flow
fields interact strongly

e at r/R close to 1, there is a "wake effect” and the efficiency can be greater
than one.

2¢. Growth Equations

The drop of radius R is falling at terminal speed through a population of smaller
droplets. the geometric collision volume swept is calculated as:

Veoll = (R + 7)*[U(R) — u(r)]At (22)

The average number of droplets with radii between r and dr is n(r)dr, so the
average number of droplets collected in unit time is:

Neoll = (R +7)*[U(R) — u(r)|E(R, r)n(r)dr (23)



for r = 100m assume coalescence efficiency =1, so the collection and colli-
sion efficiencies are equal.

The rate of increased volume with time is calculated as the number of droplets
times the volume of droplets integrated over all droplet sizes.
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We can express it in terms of the radius of the collector drop:
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If the droplets are much smaller than the collector drop u(r) ~ 0 and (R+7r) ~
R
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Where M = Vjp, is the cloud liquid water and V; = %, E is the effective
average of collision efficiency for droplet population.

(26)

U(R) increases as R increases, dR/dt increases with increasing R. For this
reason, at the beginning condensation dominates, but after a certain threshold,
growth by collisions dominates.

2d. Change of drop size with Altitude

The relative speed of the droplet determines the distance traveled:

Where U is the updraft speed and u(R) is the fall speed of the drop.

dR EMu(R)
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If U << u(R) then ‘(% = _Ef” These equations describe droplet growth as




a continuous collection process. We can also use it to determine the value of
(height) for any radius Ry. If the radius of the collector drop and any height
is Ry and the radius at cloud base is Ry, If we assume M is independent of z
(homogeneous cloud liquid water) - then
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e For small droplets U > u(R) and the first integral dominates and H in-
creases as Ry increases so the drop growing by collision is carried upward.

e For U < u(R), H decreases with increasing Ry and the drop begins to fall.
Eventually passing through cloud base and reaching the ground if it doesn’t
evaporate along the way.



