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1. The Richardson Number
1a. Flux Richardson Number

The ratio of the buoyant production term (Term III) and the mechanical produc-
tion term (Term IV) is called the Flux Richardson Number (Rf ). This number
characterizes the thermal stability of the flow.
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Rf =

g

θv
(w′θ′v)

(u′iu
′
j)
∂Ui

∂xj

(1)

The denominator consists of 9 terms. We assume horizontal homogeneity and
neglect subsidence:

Rf =

g

θv
(w′θ′v)

(u′w′)∂U
∂z

+ (v′w′)∂V
∂z

(2)

Remember, the denominator is usually negative.

• Rf > 0 for statically stable flows

• Rf < 0 for statically unstable flows

• Rf = 0 for statically neutral flows

At the critical value of Rf = +1, the mechanical production rate balances the
buoyant consumption.

• Rf < +10static stability is insufficient to prevent the mechanical generation
of turbulence, flow is dynamically unstable. (Statically unstable flow is
always dynamically unstable).

• Rf > +1 flow becomes laminar (dynamically stable)

• Rf = 0 for statically neutral flows

1b. Gradient Richardson Number

The value of the turbulent correlations could be expressed as being proportional
to the lapse rate, and the turbulent momentum flux can be proportional to the wind
gradient: w′θ′v ∝ ∂θv

∂z
, w′u′ ∝ ∂U

∂z
and w′v′ ∝ ∂V

∂z
. This is the basis of K-theory,

that we will discuss later. When substituting into equation 4, we get the Gradient
Richardson Number:

Ri =

g

θv

∂θv
∂z(

∂U
∂z

)2

+
(
∂V
∂z

)2 (3)

Laminar flow becomes turbulent when Ri < Rc ≈ .21, and turbulent flow
becomes laminar when Ri > RT ≈ 1. There is a hysteresis effect.
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1c. Bulk Richardson Number

When measuring wind shear and temperature gradients, meteorologists approxi-
mate the gradients by measurements at discrete heights:

RB =

g

θv

∆θv
∆z(

∆U
∆z

)2

+
(

∆V
∆z

)2 =
g∆θv∆z

θv((∆U)2 + (∆V )2
(4)

This is the form most frequently used. The values of the critical Richardson
number don’t apply to these finite differences across thick layers. The thinner the
layer, the closer the value to the theory.

2. The Obukhov Length
This is a very important parameter in the surface layer. Remember that in the sur-
face layer we can assume constant flux with height (by definition). Let’s multiply
the TKE equation by (−kz/u3

∗) where k is the von Karman constant ≈ 0.4. We
assume that all the turbulent fluxes are equal to their values at the surface, and
focus only on the buoyant production and mechanical production terms.

... =
−kzg
u3
∗

w′θ′v
θv︸ ︷︷ ︸

III

+
kz(u′iu

′
j)s

u3
∗

∂Ui
∂xj︸ ︷︷ ︸

IV

+... (5)

Term III is assigned the symbol ζ ≡ z
L

where L is the Obukhov length.

ζ =
z

L
=
−kzg
u3
∗

w′θ′v
θv

(6)

The Obukhov Length is given by

L =
−θvu3

∗

kg(w′θ′v)s
(7)

Physical interpretation: proportional to the height above the surface at which
buoyant factors first dominate over mechanical (shear) production of turbulence.
Buoyant and shear production terms are approximately equal at z = −0.5L. ζ is
a surface layer scaling parameter.

• ζ < 0 Unstable

3



• ζ > 0 Stable

3. Dimensionless Gradients
Let’s look now at Term IV of the normalized TKE, with a system aligned with the
mean wind, assuming horizontal homogeneity and neglecting subsidence. We use
the definition of u∗2 = −(u′w′)s.

... = ...− kz

u∗

∂Ui
∂z︸ ︷︷ ︸

IV

+... (8)

Based on this term, we define a dimensionless wind shear:

φm =
kz

u∗

∂Ui
∂z

(9)

This is used for surface-layer wind profiles and momentum fluxes. We use φm
in similarity theory. By analogy, the dimensionless lapse rate φH and dimension-
less humidity gradient φH :

φH =
kz

θSL∗

∂θ

∂z
(10)

φE =
kz

qSL∗

∂q

∂z
(11)

All of these non-dimensional numbers are= 1 for Neutral Conditions.

4. Surface Layer Scaling
Recall when we spoke about K-Theory when discussing First Order Closure:

We can define a mixing length, l by l2 = cz′2.
In the surface layer eddies are limited by the earth’s surface. It is assumed that

l2 = k2z2 where k is the von Karman constant, so:

KE = KH = Km = l2
∣∣∣∣∂U∂z

∣∣∣∣ = k2z2

∣∣∣∣∂U∂z
∣∣∣∣ (12)
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In reality, the origin of z for a rough surface because the protrusion of rough-
ness elements above the substrate surface displaces the entire flow upwards. We
define the displaced height z = Z − d, where d is the zero-displacement height
and Z is the height above the substrate surface (height above the actual ground
surface).

Hence, for neutral conditions with no buoyancy, in the surface layer (assum-
ing that the stress remains constant throughout the surface layer) we recall the
friction velocity, choosing the x-axis appropriately, reduces to:

u2
∗ = −u′w′ = Km

∂U

∂z
= k2z2

(
∂U

∂z

)2

(13)

u∗ = kz

(
∂U

∂z

)
(14)

Integration gives the famous log-wind profile for neutral conditions:

kU

u∗
= ln(z) + cnt (15)

5. Monin-Obukhov Similarity Theory
We can take into account the influence of buoyancy through the Richardson num-
ber Rf or the Obukhov Length L. The way this is generally done is by taking the
dimensionless gradients we had expressed before, which are equal to 1 in neutral
conditions, and expressing them as functions of ζ for non-neutral conditions:

Based on this term, we define a dimensionless wind shear:

φm(ζ) =
kz

u∗

∂Ui
∂z

(16)

φH(ζ) =
kz

θSL∗

∂θ

∂z
(17)

φE(ζ) =
kz

qSL∗

∂q

∂z
(18)

(NOTE: substitute the variables for their values in the neutral BL and verify
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that these variables=1 in the neutral BL)
The forms of the φ functions have been extensively studied using observations
from many experiments. Observations suggest that:

For −5 < ζ < 0

φm(ζ) = (1− 16ζ)−1/4 (19)
φH(ζ) = φE(ζ) = (1− 16ζ)−1/2 (20)

For 0 < ζ < 1
φm = φH = φE = 1 + 5ζ (21)

5a. Integral forms of the flux-gradient relations

i. Wind For the general, non-neutral case, the surface layer wind profile can be
obtained by integrating equation 16:

∂U

∂z
=

u∗φm
kz

(22)

U(z) =
u∗
k

∫ z

z0

(
dz′

z′
− dz′

z′
+ φm

dz′

z′

)
=

u∗
k

[
ln
z

z0

−
∫ z

z0

(1− φm)
dz′

z′

]
=

u∗
k

[
ln
z

z0

− ψm(ζ)

]
for 0 < ζ <= 1 Stable

ψm = −5ζ (23)

for 1 < ζ Stable
ψm = −5ln(z/z0) (24)

for ζ < 0 (x = φ−1
m = (1− 16ζ)1/4) Unstable

ψm = 2ln
1 + x

2
+ ln

1 + x2

2
− 2tan−1x+

π

2
(25)

In this form, the effects of buoyancy can be interpreted as a deviation of the
wind speed from the neutral value.
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• In unstable conditions 0 < φ < 1 and ψ > 0

• In stable conditions φ > 0 and ψ < 0

In the general case where we have two wind measurements at heights 1 and 2,
we can extend the above expression to:

U2 − U1 =
u∗
k

[
ln
z2

z1

− ψm(ζ2) + ψm(ζ1)

]
(26)

ii. Temperature In analogous form:

k(θ − θ0)

θSL∗
= ln

z

zT
− ψH(ζ) (27)

k(θv − θv0)

θSLv∗
= ln

z

zT
− ψH(ζ) (28)

Here zT is the surface scaling length for temperature. Formally θ = θ0 at z =
zT , and zT is not necessarily equal to z0. Notice that we are assuming the same
nondimensional numbers apply to potential and virtual potential temperature.

for 0 < ζ <= 1 Stable
ψm = −5ζ (29)

for 1 < ζ Stable
ψm = −5ln(z/z0) (30)

for ζ < 0 (y = φ−1
H = (1− 16ζ)1/2) Unstable

ψH = 2ln
1 + y

2
(31)

In the general case where we have two temperature measurements at heights
1 and 2, we can extend the above expression to:

k(θ2 − θ1)

θSL∗
= ln

z2

z1

− ψH(ζ2) + ψH(ζ1) (32)

k(θv2 − θv1)

θSL∗
= ln

z2

z1

− ψH(ζ2) + ψH(ζ1) (33)

iii. Humidity In analogous form:
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k(q − q0)

qSL∗
= ln

z

zq
− ψE(ζ) (34)

for 0 < ζ <= 1 Stable
ψm = −5ζ (35)

for 1 < ζ Stable
ψm = −5ln(z/z0) (36)

for ζ < 0 (y = φ−1
H = (1− 16ζ)1/2) Unstable

ψE = 2ln
1 + y

2
(37)

In the general case where we have two humidity measurements at heights 1
and 2, we can extend the above expression to:

k(q2 − q1)

qSL∗
= ln

z2

z1

− ψE(ζ2) + ψE(ζ1) (38)

Observations and theory suggest that ΦE = ΦH and ψE = ψH and zq = zT

5b. Calculating Fluxes using the Flux Profile Method

As we have shown before, if the stability and the flux or stress is known in ad-
vance, then the flux profile method can be used to solve directly for the wind speed
or the potential temperature at any height. However, often these relationships are
used in reverse, to estimate the flux knowing the mean wind or temperature pro-
file. This is much more difficult. Fore example, u∗ appears in a number of places,
explicitly and hidden in L, and L is a function of heat flux, which must be esti-
mated from the temperature profile. Solving these equations involves an iterative
approach.

Notice how we can use the above expressions to calculate the fluxes as:

u∗ =
k[U2 − U1][

ln z2
z1
− ψm(ζ2) + ψm(ζ1)

] (39)

if z1 = z0 then U1=0 and ψm(ζ1) = 0
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(w′θ′)s =
−u∗k(θ2 − θ1)

ln z2
z1
− ψH(ζ2) + ψH(ζ1)

(40)

(w′θ′v)s =
−u∗k(θv2 − θv1)

ln z2
z1
− ψH(ζ2) + ψH(ζ1)

(41)

(w′q′)s =
−u∗k(q2 − q1)

ln z2
z1
− ψE(ζ2) + ψE(ζ1)

(42)

Given the mean wind (U), pressure (P), humidity (q) and temperature (T) at a
level z and at the ”surface”.

1. From the information given calculate the density of air ρ the latent heat Lv,
θ and θv

2. Calculate u∗, assuming neutral conditions.

3. Calculate w′q′

4. Calculate w′θ′, w′θ′v

5. Calculate L

6. Begin iteration i

(a) If Li > 0 conditions are stable - calculate ψE = ψH and ψm
(b) If Li < 0 conditions are unstable - calculate ψE = ψH and ψm
(c) If Li = 0 conditions are neutral ψE = ψH = ψm = 0

(d) Re-calculate u∗, w′q′, w′θ′ and L using the relationships that depend
on stability ζ

(e) Calculate the difference in the fluxes w′q′, w′θ′ between this iteration
and the previous iteration. If the difference is large, continue to iterate
until your answers converge.

6. Bulk Transfer Relations
For practical applications, we use drag and bulk transfer coefficients to relate
fluxes to mean properties of the flow.
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6a. Drag Coefficient

Using the relationship 23, and the definition of friction velocity u∗, a drag coeffi-
cient CDis defined as:

CD =
(u′w′

2
)1/2

U
2 =

u2
∗

U
2 =

k2[
ln z

z0
− ψM(ζ)

]2 (43)

CDN =
k2[
ln z

z0

]2 (44)

CD
CDN

=

[
1− ψM(ζ)

ln z
z0

]−2

(45)

6b. Heat Transfer Coefficient

By analogy with the drag coefficient, a heat transfer coefficient CH can be defined
using the relationship 42 and the definition of θSL∗ = −w′θ′s/u∗

CH =
QH

U(θ0 − θ)
=

(θ′w′s)

U(θ0 − θ)
(46)

=
(θ′w′s)

−u∗
k

[
ln z

z0
− ψM(ζ)

]
θSL
∗
k

[
ln z

zT
− ψH(ζ)

]
=

k2[
ln z

z0
− ψM(ζ)

] [
ln z

zT
− ψH(ζ)

]
(47)

Where QH is the kinematic sensible heat which is the sensible heat divided by
ρCp

CHN =
k2[

ln z
z0

] [
ln z

zT

] (48)
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CH
CHN

=

 1

1− ψM (ζ)
ln z

z0

 1

1− ψH(ζ)
ln z

zT

 (49)

Values of CDN/CHN greater than one indicate the more efficient transfer of
momentum than heat as the surface is rougher.

6c. Moisture Transfer Coefficient

By analogy with the heat transfer coefficient, a heat transfer coefficient CE can be
defined using the relationship 34 and the definition of qSL∗ = −w′q′s/u∗

CE =
R

U(q0 − q)
=

(q′w′s)

U(q0 − q)
(50)

=
(q′w′s)

−u∗
k

[
ln z

z0
− ψM(ζ)

]
qSL
∗
k

[
ln z

zq
− ψE(ζ)

]
=

k2[
ln z

z0
− ψM(ζ)

] [
ln z

zq
− ψE(ζ)

]
(51)

Where R is the kinematic vertical eddy moisture flux.

CEN =
k2[

ln z
z0

] [
ln z

zq

] (52)

CE
CEN

=

 1

1− ψM (ζ)
ln z

z0

 1

1− ψE(ζ)
ln z

zq

 (53)

7. Aerodynamic Resistances
The drag, heat and mass transfer coefficients discussed above take into account
both turbulent transfer and molecular transfer of a property between the surface
and a reference height z in the surface layer. For some applications, it is more
convenient to replace the transfer coefficients by ”quasi-resistance” parameters.
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In this approach, the linking of molecular transfer in the interfacial layer and
turbulent transfer in the surface layer is simplified. This relates to the additive
property of resistances in series.
By analogy to Ohm’s law (resistance = potential difference / current). For any
concentration difference (γ0 − γ) and flux Fs

ra = (γ0 − γ)/Fs (54)

ra has dimensions of sm−1. The reciprocal r−1
a is the conductance.

7a. Momentum

From the definition ofCD (equation 43, we define the bulk aerodynamic resistance
to the transfer of momentum from a level z to the surface z = z0 as:

raM =
ρ(u(z)− u(z0))

τs
=
u(z)

u2
∗

= (CDu(z))−1 (55)

As CD increases or u(z) increases, the resistance increases.

7b. Heat

From the definition of CH , we define the bulk aerodynamic resistance to the
transfer of heat from the surface z = z0 to a level z as:

raH =
(θ0 − θ)
H0

= (CHu(z))−1 (56)

7c. Moisture

From the definition of CE , we define the bulk aerodynamic resistance to the
transfer of moisture from the surface z = z0 to a level z as:

raE =
(q0 − θ)
E0

= (CEu(z))−1 (57)

It is important to note that under near-neutral conditions, the resistance for
moisture and heat is higher than for momentum.

Figure 1: Figure 3.8 Garrat
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The surface values θ0 and q0 must be estimated to use the expressions for the
bulk aerodynamic resistance to sensible and latent heat exchange:

raH =
ρcp(θ0 − θ)

H0

(58)

raV =
ρ(q0 − q)

E0

(59)
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