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1. Soil Moisture
Porosity depends on particle size distribution and structure.

n0 =
Volume of Voids

∆∀
(1)

Volumetric water content. When soil is fully saturated θs=n0.

θ =
Volume of water in ∆∀

∆∀
(2)

1a. Continuity Equation

The continuity equation for a control volume containing unsaturated soil with
dimensions δx, δy, δz with flow only in the vertical direction is:

Consequently:
∂θ

∂t
= − ∂qi

∂xi
(3)

This is the continuity equation for one-dimensional unsteady unsaturated flow
in a porous medium. It is applicable at shallow depths, at greater depth, changes
in water density and in the porosity must be taken into account. In this equation q
is the volumetric flow rate per unit area of soil, this is called the Darcy flux:

1b. Darcy’s Law

Infiltration and redistribution are flows in saturated and unsaturated porous media
(soils) that are described by Darcy’s Law. Darcy stated that the rate of flow of
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water is proportional to the change of head, the cross-sectional area and inversely
proportional to the path-length of travel (and a constant of proportionality K).

Q =
KA(h1 − h2)

∆L
(4)

For an infinitesimal volume, we can write the equation:

qi = −K ∂h

∂xi
(5)

where

h = z +
p

ρwg
= z +

p

γw
= z + ψw (6)

where ψ is the equivalent height of water.

∂h

∂xi
= δj3

∂xj
∂xi

+
∂ψw

∂xi
(7)

so qi

qi = −K
[
δj3
∂xj
∂xi

+
∂ψw

∂xi

]
(8)

Where qi is the volumetric flow rate in the i direction per unit cross-sectional
area of the medium (m/s), z is the elevation above an arbitrary datum, p is the wa-
ter pressure, γw is the weight density of water and K is the hydraulic conductivity
of the medium. Darcy’s Law describes the flow at a representative elemental vol-
ume of the soil that includes pore spaces and soil particles. Flow occurs because
of gradients in gravitational potential energy (term one) and pressure potential en-
ergy (term two).

If we consider only flows in the vertical (z) direction:

qz = −K
[
∂z

∂z
+
∂(ψw

∂z

]
(9)

= −K
[
1 +

∂ψw

∂z

]
(10)

The magnitude of the gravitational potential energy gradient will always equal
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one (+ or - depending on the direction of flow and definition of the coordinate
system, in this case +1 going up and -1 going down). p ≤ 0 for the unsaturated
flows considered here.

1c. True Velocity

While qi is the volumetric flow rate per unit bulk area, the true velocity

vqi =
qi
n0

(11)

for fully saturated conditions and

vqi =
qi
θ

(12)

for unsaturated conditions.

We have until now assumed that K is independent of direction (isotropic). In
reality it isn’t and K is actually a tensor. For the most general case:

qi = −Kij
∂h

∂xj
(13)

In the derivations that follow we will assume isotropic conditions.
It is convenient to use a pressure head ψ (units of m) defined as

i. Pressure It is conventional to measure pressure relative to atmospheric pres-
sure. p > 0 and ψ > 0 in saturated flows and p < 0 and ψ < 0 in unsaturated
flows, The water table is the surface at which p = 0. Negative pressure is called
tension or suction and ψ is called the tension head, matric potential or matric
suction when p < 0. In unsaturated soils, water is held to the mineral grains by
surface tension forces. When talking about infiltration, p and ψ will always be
negative.

The relation between the pressure head ψ and water content θ is called the
moisture-characteristic curve. The relationship is highly nonlinear. Pressure head
is zero when water content equals porosity. There is a point when significant
volumes of air begin to appear in the soi and this is the air-entry tension ψae.
Beyond this point, water content begins to decrease rapidly and more gradually.
After a certain value, even very large tensions will not dry out the soil because
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Figure 1: Dingman Figure 6-7 and 6-9

this water content is very tightly held in the soil pores by capillary and electro-
chemical forces. Given a certain degree of saturation, tension is much higher in
finer-grained soils than in coarse grained soils.

In reality the value of tension at a given water content is not unique, but de-
pends on the soil’s history of wetting and drying - however, this hysteresis is
difficult to model and not usually incorporated in hydrologic models.

ii. Hydraulic Conductivity Hydraulic conductivity is the rate at which water
moves through a porous medium under a unit potential energy gradient. Under
saturated conditions, this size is determined by the soil-grain size. For unsaturated
conditions it is determined by grain size and degree of saturation. K is very low
at low to moderate water content, and increases nonlinearly to its saturated value
(K∗) as water content increases. K increases by several orders of magnitude in
going from clay to silty clay loam to sand (also depending on degree of saturation).

iii. Incorporating K - θ and ψ - θ Relations into Models Brooks and Corey
(1964), Campbell (1974) and Van Genuchten (1980) have proposed various rela-
tions for K - θ and ψ - θ relations:
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Figure 2: Dingman Figure 6-8
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|ψ(θ)| = |ψae|
(n0

θ

)b

(14)

K(θ) = K∗
(
θ

n0

)c

(15)

These equations ignore hysteresis, apply only to |ψ| ≥ |ψae| - crude approxi-
mations for |ψ| ≤ |ψae| can be made by a straight line from |ψ| = 0 to |ψ| = |ψae|.
b is the pore size distribution index, c is the pore-disconnectedness index.

c = 2b+ 3 (16)

Typical values determined by statistical analysis of data for a large number of
soils are given below:

Figure 3: Table 6-1 Dingman

iv. Hydraulic Diffusivity It is sometimes useful to use hydraulic diffusivityD(θ)
as

D(θ) ≡ K(θ)
∂ψ(θ)

∂θ
(17)

notice the dimensions: [m2/s]. This means that the flow due to the pressure
gradient can be expressed as the product of the hydraulic diffusivity and the water-
content gradient. Using the relationships above:
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D(θ) = −bψaeK
∗n−b−3

0 θb+2 (18)

1d. Richard’s Equation

We can write the continuity equation using Darcy Flux in terms of the hydraulic
conductivity and hydraulic diffusivity:

qi = −K(θ)

[
δj3
∂xj
∂xi

+
∂ψw

∂θ

∂θ

∂xi

]
(19)

= −K(θ)δj3
∂xj
∂xi
−D(θ)

∂θ

∂xi
(20)

(21)

Darcy’s Law for the vertical direction:

q = −K(θ)

[
1 +

∂ψ(θ)

∂z

]
(22)

= −K(θ)−D(θ)
dθ

dz
(23)

This equation is exactly the same (physically) as the original Darcy, but it
simplifies the following analytical solutions. Remember the original conservation
equation:

∂θ

∂t
= − ∂qi

∂xi
(24)

(25)

We can now express this in terms of the Darcy Flux, to obtain the Three
Dimensional Richards Equation for Isotropic Conditions.

∂θ

∂t
= − ∂

∂xi

[
−K(θ)δj3

∂xj
∂xi
−D(θ)

∂θ

∂xi

]
(26)
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