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Gravity, Geopotential, Geoid and Satellite Orbits 
 

Much of this introductory material on gravity comes from Turcotte and Schubert (1982).  
The satellite orbit material comes from Elachi and van Zyl (2006). 
 
Gravitational acceleration 

The gravitational force between two point masses, M and m, pulling on one another is:   

 
  

€ 

 
F g = −

GMm
r2

ˆ r   

where G is the gravitational constant = 6.67300 × 10-11 m3 kg-1 s-2 and r is the distance 
between the centers of the two masses in meters.  The minus sign means the force of 
gravity pulls the masses toward one another.  Since F = ma, the gravitational acceleration felt 
by mass, m, is simply 

 a = GM/r2 (1) 

Consider Earth’s surface gravity.  We assume at first that Earth is a perfect sphere so that it can 
be treated as a point mass.  Given Earth’s mass =5.9736e24 kg and its average radius of 
6.37101x106 m.  The resulting surface gravity is 9.820660317 m/s2.  This is quite close to the 
standard average surface gravity of 9.80665 m/s2. 
 Note:  GM is known far better than G or M. 
 
 
Issues related to Earth Spin… 
 
Earth is not a sphere 

The Earth gravitational acceleration we feel includes the effects of the Earth’s spin. There 
are two first order effects to be considered, the Earth is no longer a sphere and cannot be rtreated 
as a point mass and there is centrifugal force to be considered.  Because of the spin of the Earth, 
the Earth has an equatorial bulge such that its equatorial radius is larger than its polar radius by 
about 20 km.  This means a location at the pole is actually slightly closer to the Earth’s center 
than a location on the equator.  Therefore we can anticipate that the surface gravity at the pole is 
slightly larger than the surface gravity at the equator (see Table below). 

The acceleration at the surface of Earth due to the force of gravity (which includes the 
effect of the greater radius at the equator) is  

 

€ 

g = −
GM
r2

+
3GMa2J2
2r4

3sin2 φ −1( ) 

where a is Earth’s equatorial radius and φ is the latitude and J2 is the second spherical harmonic 
of Earth’s gravitational field (=1.08263e-3) which is a measure of Earth’s equatorial bulge.   

Notice in this simple treatment there is no longitudinal dependence.  In a more complex 
treatment of the gravity there is longitudinal dependence as well. 
 
Centrifugal force 

From the simple harmonic oscillator, we know the centrifugal force felt at the surface of 
the Earth due to the rotation of the Earth is 



ATMO 551a   Gravity Fall 2010 

 2 Kursinski 09/26/10 

 

€ 

gω =ω 2s 

where ω is the angular velocity (=2 π /86164 seconds = 7.29e-5 radians/sec) and s is the 
perpendicular distance from the spin axis which is given as 

 s = r cos φ 

where r is the distance from the center of the Earth to the surface location being considered and φ 
is again the latitude.  Therefore the centrifugal acceleration at Earth’s surface is 

 

€ 

gω =ω 2rcosφ  

The magnitude of this centrifugal acceleration is largest at the equator where it is equal to 0.0339 
m/s2.  This is about 0.35% of the acceleration due to the force of gravity. The gravitational 
acceleration we feel at the surface defines the apparent local radial direction.  So the component 
that is relevant to gravity is the radial component which is 

 

€ 

gr '= gω cosφ =ω 2rcos2 φ  

Note that this is positive because it is an outward or upward acceleration so it decreases the 
acceleration due to the force of gravity.   
 The full equation of gravity that includes the first order effect of spin is 

 

€ 

g = −
GM
r2

+
3GMa2J2
2r4

3sin2 φ −1( ) +ω 2rcos2 φ  

I have compared this equation to a far more sophisticated equation of gravity derived from many 
years of satellite data and found it to be good to several parts in 104. 
 The table below shows the contributions of the three terms. 
 

 equatorial polar Units 
radius 6378.139 6356.7523 km 

latitude 0 1.570796 radians 
    

GM/r^2 -9.798280 -9.864322 m/s2 
3GMa2J2/2r4 -0.015912 0.032038 m/s2 

centrifugal 0.033916 0 m/s2 
    

Total gravity -9.780277 -9.832284 m/s2 
 
So the equatorial gravity is indeed less than the polar gravity but not as much as the GM/r2 term 
would imply by itself. 
 
Sidereal day versus solar day (what’s my frame of reference) 
 In order to calculate the spin rate of the Earth for the centrifugal term, we need to know 
the length of a day.  What is the length of a day?  This may seem like an obvious question but 
actually it is not and the answer depends on the frame of reference you choose. 

In what we normally call a year, the Earth rotates around the sun once per year.  This 
number of days is actually one rotation less in comparison to the number of rotations relative to 
absolute space.  A “sidereal” day is slightly shorter than a “solar day” because the Earth does not 
have to rotate quite as far to make a full revolution relative to absolute space as it does for the 
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sun to come directly overhead again.   So there are 366.25 sidereal days per year compared to 
365.25 solar days per year. So the length of a sidereal day is 365.25/366.25 * 86,400 sec = 
86,164 sec.  (Note there is a slight mistake in Elachi and Van Zyl on page 528). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Change in gravity with altitude 
 We can examine the radial dependence of gravity by performing a Taylor expansion of 
the gravitational acceleration around the value at the surface.   
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g = −
GM
r2

+
3GMa2J2
2r4

3sin2 φ −1( ) +ω 2rcos2 φ  

The vertical gradient of g is 

 

€ 

∂g
∂r

= +2GM
r3

−
6GMa2J2

r5
3sin2 φ −1( ) +ω 2 cos2 φ  

The dominant term is the first term.  Consider the fractional change in g with height. 

Points to a location in 
absolute space 

Points to the sun  
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r is approximately 6,371,000 m.   
 Point mass term J2 term Centrifugal term Units 

dlng/dr -3e-7 ~3e-9 -5e-10 m-1 
 
So at 10 km =104 m altitude the fractional change in g relative to the surface is 0.3%.  For many 
applications this can be ignored.  For some high precision applications, it cannot. 
 
 
Geopotential and the geoid 
 The potential energy of an object in Earth’s gravity field can be determined by integrating 
the work done by the gravitational force in taking the object from an infinite distance to a finite 
distance r from Earth 
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ΔW
m

= −
GM
r

+
GMa2J2
2r3

3sin2 φ −1( ) ≡V r( )  

The centrifugal term has not been included in the integral because it assumes a rigid rotation with 
the spin of the Earth which, at a distance of infinity, produces an infinite and unphysical 
rotational velocity.  V is known as the gravitational potential which is the gravitational potential 
energy of a mass divided by its mass.   
 A gravity potential, U, that accounts for both gravitation and rotation we can take the 
integral of the gravity equation: 

 

€ 

U r( ) = −
GM
r

+
GMa2J2
2r3

3sin2 φ −1( ) − 12ω
2r2 cos2 φ  

 
 The “equipotential” surface and why we care 

As you move along a surface on which the gravitational potential energy changes as you 
move along it, you will feel a force either pushing against you or accelerating you.  Unlike a 
solid surface whose strength can oppose this force (so long as the force is not stronger than the 
solid’s strength), a fluid surface will respond to this force by moving and adjusting until its 
surface shape changes and there is no remaining horizontal force.  Therefore (in the absence of 
other forces) the ocean surface is a surface along which the gravitational potential energy is 
constant.  Such a surface is a called an equipotential surface.  The reference equipotential surface 
that defines sea level is called the geoid. 
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 The equatorial sea level geopotential (where φ = 0) is 

 

€ 

U r = a( ) = −
GM
a

−
GMJ2
2a

−
1
2
ω 2a2 ≡U0  

 The polar sea level geopotential (where φ=π/2) is 
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U r = rpol( ) = −
GM
rpol

+
GMa2J2
rpol
3 ≡U0  

The flattening or ellipticity of this geoid is defined by 
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f =
a − rpol
a

=1−
rpol
a
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rpol = a 1− f( ) 

We assume that the Earth’s sea level surface is a geopotential and set the equatorial and polar 
geopotentials equal to get 

 

€ 

−
GM
a

−
GMJ2
2a

−
1
2
ω 2a2 = −

GM
rpol

+
GMa2J2
rpol
3  

 

€ 

1+
J2
2

+
1
2
ω 2a3

GM
=

a
rpol

−
a3J2
rpol
3 =

a
rpol

1− a
2J2
rpol
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

Subbing 

€ 

rpol = a 1− f( ) and only using first order terms in f and J2 which are both very small 
yields 
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f =
3J2
2

+
1
2
ω 2a3

GM
 

Plugging in values of J2 = 1.08270x10-3 and a3ω2/GM = 3.46775x10-3 yields a value of f of 
3.3579x10-3.  The true value, 3.35282x10-3, is quite close. 
 

The shape of the model geoid is nearly that of a spherical surface.  Defining r0 as the 
distance to the geoid surface 
 

€ 

r0 = a 1−ε( ) 

where ε << 1.  Subbing this into 
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U r( ) = −
GM
r

+
GMa2J2
2r3

3sin2 φ −1( ) − 12ω
2r2 cos2 φ  
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yields 
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U0 = −
GM
a 1−ε( )

+
GMa2J2
2a3 1−ε( )3

3sin2 φ −1( ) − 12ω
2a2 1−ε( )2 cos2 φ  

We then set this equal to the value of Uo that we got at the equator 
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U0 ≡U r = a( ) = −
GM
a

−
GMJ2
2a

−
1
2
ω 2a2  

We then solve for ε. 
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So the surface of the geoid is defined as 
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which is also 
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r0 = a 1− f sin2 φ( )  

A better model is 
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with a = 6378.139 km and f = 1/298.256.   
 The actual geoid is known to much higher precision and is being updated most recently 
by the Gravity Recovery And Climate Experiment (GRACE).  Note that GRACE actually 
measures the time-evolving gravity field and geoid. 
 
See http://earthobservatory.nasa.gov/Library/GRACE_Revised/page3.html 
 
The geoid is critical as a reference surface that determines what the surface of the ocean should 
be in the absence of any dynamics, that is ocean currents.   One way currents reveal themselves 
to satellites is as topography on the ocean surface relative to the geoid. This is the result of 
geostrophic balance of the pressure gradient and the coriolis forces. 
 
 
Satellite Orbits 
 

For observing weather and climate related phenomena, there are 2 main classes of satellite 
orbits, geosynchronous (or geostationary) and low Earth orbit (LEO).   

We will discuss circular orbits primarily. While it takes 6 orbital “elements” to uniquely 
define a satellite orbit, from our perspective, the main features of an orbit are its radius or 
altitude, orbital period, orbital velocity, inclination, times of day crossing the equator (“longitude 
of the ascending node”) and precession rate.  These are not independent of one another. 
 
Inclination 

Inclination refers to the tilt of the orbital plane relative to the equatorial plane of the Earth.  A 
0o inclination has a plane coincident with the plane of Earth’s equator and orbits with the same 
rotation as the Earth’s spin.  A 90o inclination is exactly a polar orbit, orthogonal to the Earth’s 
equatorial orbit.  A 180o inclination is also coincident with Earth’s equatorial plane but the 
satellite orbits in the opposite direction as the Earth’s spin and is said to be a “retrograde” orbit.  
Getting into such an orbit is expensive energetically (=bigger launch vehicle) because the launch 
vehicle cannot take advantage of the momentum of the Earth’s spin (~0.5 m/sec) at launch. 

Choice of inclination is often set by the desired latitudinal coverage.  If you want coverage 
that extends from pole to pole, you need an inclination that is nearly polar or at least a high 
inclination of 70-110o.  Repeat cycle is another important consideration. 

Further refinement of the choice will also depend on if your instrument looks downward 
(nadir-viewing) or is looking at the Earth’s limb (limb-viewing).  An orbit for a nadir viewing 
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instrument will have to be closer to a polar orbit depending on how far off nadir the instrument 
looks as it scans.  If it looks exactly nadir like the CloudSat cloud profiling radar and you want 
pole to pole coverage then the orbit would have to be exactly polar.   

If the instruments are limb-viewing then a 70 degree orbit may suffice depending on the 
altitude of the orbit.  For a given radius, what is the minimum inclination, Imin, necessary for a 
limb viewing instrument to see the pole from an orbit with altitude, h? The answer is 

 sin(Imin) = RE/r = RE/(RE + h) = 1/(1 + h/RE)  

where is RE the Earth’s radius and r is the orbital radius = RE + h. 
For h=750 km, Imin = 63.5o.  This is the minimum inclination to 

just see the pole, so the actual inclination used will be somewhat 
larger. 
 
 
Geostationary orbits 

Geostationary orbits have a 24 hour period such that the satellite sits over the same longitude 
of the Earth and can see the entire diurnal cycle, particularly cloud tops.  Circular geostationary 
orbits are equatorial orbits with an inclination of 0o.  
 
LEO satellites 

Low Earth orbits have altitudes typically ranging from 500 to 850 km and orbital periods are 
about 100 minutes.  A special class of near-polar orbits is sun-synchronous so they always 
measure the same 2 times of day or more generally precessing where the local time of the 
observations drifts.  (near-)polar orbiters are used to observe high latitudes.  

The lower altitude limit of usable orbits is set by atmospheric drag which causes the orbital 
altitude to decay such that the orbit is not stable and the satellite will eventually reenter the 
Earth’s atmosphere.  The density of the atmosphere at these altitudes varies with the 11 year 
solar cycle.   The reason is as the sun emits more UV and higher energy radiation during the 
solar cycle maximum (due to a 22 year convective-magnetic field cycle on the sun), this energy 
is absorbed by the upper atmosphere causing the atmosphere to warm and expand.  This pushes 
the atmospheric density structure to higher altitudes at the peak of the solar cycle causing more 
drag on spacecraft.  The lowest altitude orbits are chosen to be closer to the surface, often for 
purposes of imaging resolution, to achieve higher signal to noise ratio (SNR) for active 
instruments with limited transmit power or increased sensitivity to variations in the Earth’s 
gravity field.  Altitudes higher than ~1000 km are avoided when possible to avoid higher 
radiation levels there from energetic particles which drive up the cost of the instrument and 
satellite electronics. 
 
Orbital period for circular orbits: Harmonic oscillator 

The simple motion of a satellite in a circular orbit around spherical planet can be described in 
terms of sine and cosines. 

 y(t) = r sin(+2πt/T),      x(t) = r cos(+2πt/T) 

where T is the orbital period and r is the orbital radius and t is time.  The + refers to the direction 
the satellite moves in its orbit, clockwise or counterclockwise.  For the moment we are interested 
in magnitudes so we’ll drop the +.  The velocities components are 

 RE 
I 

h 

Equatorial 
plane, edge-on 

Orbital plane, 
edge-on 
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 vy(t) = 2π r/T cos(2πt/T),      vx(t) = - 2π r/T  sin(2πt/T) (2) 

The centripetal accelerations are  

 ay(t) = -r (2π/T)2 sin(2πt/T),      ax(t) = - r (2π/T)2 cos(2πt/T) (3) 

We set the magnitude of this centripetal acceleration, r (2π/T)2, equal to the gravitational 
acceleration to determine the orbital period versus radius 

 r (2π/T)2 = GM/r2 

from which we get Kepler’s famous law:  r3 α T2: 

 T2 = (2π)2 r3/GM 

Alternatively we can write the gravitational acceleration in terms of the surface gravitational 
acceleration, gs, which on average is 9.81 m/sec2 for the Earth. 

 a = GM/r2 = gs RE
2/r2 

where RE is the radius of the planet in general or in this case the Earth. Again for a circular orbit, 
the radial gravitational acceleration equals the magnitude of the centripetal acceleration  

 r3 (2π/T)2 = gs RE
2      

In this form,  

 T = 2π (r3/2/RE)/gs
1/2     or     r = [gs RE

2(T/2π)2]1/3 (4) 

 
 
 
Orbital Velocity 

From equation (2), the magnitude of the orbital velocity, V0, is 2π r/T. Combining this with 
(4) yields  

 V0 = 2π r/T = 2π r gs
1/2 /[2π (r3/2/RE)] = RE r-1/2 gs

1/2  (5) 

{Check units: m m-1/2 m1/2 s-1 = m/s } 

 

geostationary 

GPS 

LEO 

LEO 
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As the Figure shows, LEO velocities are around 7 km/sec (actually 7.5 km/sec for the typical 
altitude range of 500 to 850 km altitude). The velocity scales inversely with the square root of 
the orbital radius, so the velocity decreases as the orbital radius increases.  The velocity of a 
geosynchronous orbit is about (7/42)1/2 or 40% of that of a LEO or 3 km/sec. 

We care about orbital velocity because from LEO it limits how long we can view a location 
on Earth.  Our instruments must be designed with this in mind. 
 
Orbital Precession  

The orientation of the orbital plane is defined relative to absolute space (NOT relative to the 
changing direction from the center of the Earth to the center of the sun).  The orbital plane 
precesses in general depending primarily on the orbital inclination and the J2 of the planet which 
is the second zonal harmonic of the Earth’s geopotential field.   J2 is essentially a measure of the 
equatorial bulge. The precession rate is given as  

 dΩ/dt = -3/2 J2 RE
3 gs

1/2 cos(I)/r7/2 (6) 

where Ω is the longitude of the ascending node, and I is the orbital inclination 
check units: m3 m1/2 s-1 m-7/2 = s-1  = rad/sec 

Additional points: 
• Note that a perfectly polar orbit (I = 90o) does not precess.   
• For an orbit to precess in the same direction as Earth’s spin, its inclination, I, must be 

larger than 90o.   
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Sun synchronous orbits: 

A sun synchronous orbit keeps the alignment of the orbital plane fixed relative to the line 
between the center of the Earth and the center of the Sun.  Sun synchronous orbits are desirable 
for keeping the solar illumination the same from orbit to orbit which simplifies satellite and 
instrument designs.  

WEATHER: Large, “polar-orbiting”, weather satellites carrying many instruments are 
often in sun synchronous orbits.  Strictly speaking they are not in polar orbits but their 
inclination is close to 90o as we will see.  Their orbits are often described by the time of day they 
cross the equator. 

CLIMATE:  They used to be the orbits of choice for LEO climate measurements because the 
observations don’t drift in local time of day so the diurnal cycle in theory does not enter into the 
long term measurements. However, sun synchronous orbits can drift slightly over time, causing 
the diurnal signal to alias into the long term climate signal causing a nightmare to try to remove 
such a subtle signal while looking for another subtle signal.  Another problem is the diurnal cycle 
itself is predicted to change and is apparently changing as the climate warms.  Such changes are 
guaranteed to alias into long term trends measured by sun synchronous orbits.  In my opinion, 
orbiting observing systems should be designed to sample all times of day throughout the year so 
that the diurnal signal and the seasonal signal are captured as part of the climate signal.  Then 
clever researchers can separate the different time dependent signals apart during their analysis 
as they try to unravel what the climate system is actually doing.   

To make an orbit sun-synchronous, the orbit must precess one extra revolution in a year.  So 
the precession rate is 360o in 366.25 sidereal days or about 1 degree per day or 0.2 microrad/sec. 
We set eqn. (7) equal to 1.99x10-7 rad/sec to get the Figure below. 
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Figure A.  Inclination vs. orbital altitude for sun synchronous orbits 

 
Example:  CloudSat moves in a sun-synchronous orbit which has an equatorial altitude of 
approximately 705 km. This sun-synchronous orbit is nearly circular and is inclined with respect 
to the earth's equator at 98.2 degrees (see Figure A).  The CloudSat orbit is stable for 20 to 30 
years before drag will bring it down into the Earth’s atmosphere. 
 
 
Sampling and coverage 

 
Geosynchronous orbiters provide essentially continuous coverage of the region underneath 

them.  Polar orbiters essentially sample two times per day (one day and one night) at the equator, 
as the orbit slowly precesses and the Earth rotates underneath the orbital plane.  For sun 
synchronous orbits, the solar times are fixed.  For all other LEOs, the solar time of the two 
equatorial crosses drifts with time.   

 
 



ATMO 551a   Gravity Fall 2010 

 13 Kursinski 09/26/10 

For orbital altitudes between 500 and 1500 km, the orbital period varies from about 95 to 115 
minutes.  Since a solar day is 1440 minutes in length, the number of daytime equatorial crossings 
per day is about 13-15. 

For an altitude of 550 km, the number of orbits per day is about 15.  So the spacing between 
daytime (or nighttime) equatorial crossings is 360o/15 = 24o of longitude.  So if your nadir-
viewing instrument can sweep back and forth by +12 degrees of longitude, your instrument could 
sample the entire globe every day.  1o of longitude at the equator is about 111 km so 12o is 1332 
km.  The look angle off nadir would have to be tan(θ) = 1332/550 so θ = +68o which is quite 
large.  A higher orbit would achieve full global coverage (at a cost of resolution because it is 
higher above the Earth).  Because of the wide swaths required to achieve full coverage each day, 
there is typically a gap between consecutive swaths at the equator.   
 
AIRS example 

The Atmospheric InfraRed Sounder (AIRS) is a nadir-viewing, high resolution IR 
spectrometer on NASA’s AQUA satellite in the A-train (see below) flying at 705 km altitude in a 
sun synchronous orbit.  The AIRS infrared bands have an instantaneous field of view (IFOV) of 
1.1º (=19 mrad) and FOV = ± 49.5º (=0.86 rad) scanning capability perpendicular to the 
spacecraft ground track.  So the horizontal resolution is tan(0.019)*705 km = 13.5 km at nadir 
and the swath width = 2*tan(0.086)*705 km = 1650 km.   

Does this swath width allow AIRS to sample the entire equator each day?  At 705 km 
altitude, the orbital period is 98 minutes.  In 98 minutes the Earth rotates 24.5 degrees of 
longitude which means the location under AIRS has moved 24.5*111 km = 2720 km.  So each 
day AIRS samples the atmosphere about 1650/2720 = 60% of the equatorial area. 

The combined high spatial resolution and wide swath width combined with the fast orbital 
motion of 7.5 km/sec means there is not a lot of time for each measurement. The measurement 
integration time for each 13.5 km sounding of the atmosphere must be quite short given the 7.5 
km orbital velocity of AQUA and AIRS.  The time it takes the satellite to move 13.5 km along 
its orbital track is 1.8 seconds.  This is the time available to do a scan across the full swath width.  
So the number of individual 1.1o footprint soundings per swath width scan is 90 and the time of 
data measurement per sounding is 1.8 seconds/90 = 20 msec.  The actual integration time is 
22.41 ms for each footprint of 1.1º in diameter.  This short time likely hurts the signal to noise 
ratio (SNR) a bit and reduces the accuracy of the individual profiles but AIRS is trying to do a 
lot and tradeoffs must be made. 

AIRS is a very powerful sounder sampling a large portion of the global atmosphere each 
data.  However, since AIRS is an IR instrument, it requires clear sky to derive atmospheric 
profiles and about 95% of the AIRS footprints are cloud contaminated (Joanna Joiner, pers. 
comm.) which reduces its actual coverage to about 5% of its theoretical coverage.  In regions that 
are systematically cloudy, AIRS may have trouble profiling the atmosphere.  Still AIRS is a 
VERY powerful atmospheric sounder for temperature, water vapor and other trace constituents 
in the atmosphere. 
 
Orbital Repeat Period 
 

Elachi and van Zyl (EvZ)’s Figure B-7 shows repeat periods for LEO sun synchronous 
orbits, that is, the time and the number of orbits between which the satellite flies exactly over the 
same location again.  The easiest way to understand this figure is to start with lowest row of 
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numbers that has 5 items reading  R=16   R=15   R=14   R=13    R=12.  This row 
coincides/aligns with the y-axis cycle period of 1 day.  This means that at R=16, a satellite with 
an orbital altitude of approximately 270 km will fly over exactly the same locations on the Earth 
one day later after the satellite has gone around the Earth 16 times. 

The second row has entries 31  29  27  and 25.  The 29 means that for an altitude of about 
710 km, the satellite will fly over the exact same locations every 2 days after orbiting the Earth 
29 times.   
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Semi-arid satellite mission? 

This past summer we looked briefly at the feasibility and utility of a semi-arid land LEO 
satellite that would sample the North American Southwest as well as other semi-aird and arid 
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regions of the globe as often as possible.  From EvZ’s figure B-7, the fastest repeat time for a 
LEO in the 500 to 900 km range is once per day at either 560 km (15 orbits per day) or 900 km 
(14 orbits per day).  A basic problem is that an enormous amount of funds (several hundred 
million dollars) would be required to bring such a mission to reality and only two times of day 
would be sampled in a region where the diurnal cycle is very large and very important.  
Geosynchronous satellite would be better in terms of coverage but far more expensive and would 
have to confront the standard problem of fine horizontal resolution from 36,000 km in space.  
Particularly during the monsoon, the observations that could penetrate the cloud cover would be 
quite limited.  We discussed stratospheric, lighter than air platforms being developed for telecom 
and Star Wars applications but they still have some serious technical problems to overcome. 
 
Repeating orbits for calibration:  TOPEX and JASON 

Systematically flying over the exact same location every so often can be very important for 
calibration of the satellite observations.  TOPEX and its successor, JASON, carry altimeters to 
measure the ocean topography for inferring ocean currents and warm and cold regions for severe 
weather, and large scale waves like Kelvin waves associated with the El Nino-Southern 
Oscillation (ENSO) cycle and the long term rise in sea level predicted (with large error bars) to 
occur with global warming.  In order to make sure the ocean sea level measurements are right, 
these orbits are designed to repeat every so often over locations with very precise sea level 
gauges whose measurements can be compared with the altimeters to quantify and understand the 
errors.   This has worked quite well and satellite altimeter measurements of the sea level rise 
since 1992 when TOPEX launched are very good and indicate 2.8±0.4 mm/yr.  Our 
understanding of what is contributing to the rise is less certain.  The dominant contributor is 
probably thermal expansion of the upper oceans but how much is due to melting land ice is 
unclear. 
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To see how the sea level has been changing by region, see also 
http://globalclimatechange.jpl.nasa.gov/news/index.cfm?FuseAction=ShowNews&NewsID=16 

 
NASA’s A-train (see: http://events.eoportal.org/pres_AquaMissionEOSPM1.html) consists 

of several satellites each in the same orbit but slightly delayed with respect to one another.  The 
orbit is summarized as Sun-synchronous circular orbit, altitude = 705 km (nominal), inclination 
= 98.2º, local equator crossing at 13:30 (1:30 PM) on ascending node, period = 98.8 minutes, the 
repeat cycle is 16 days (233 orbits).  The repeat period allows flights over calibrating ground 
instruments every 16 days to help calibrate the orbiting instruments and refine retrieval 
algorithms.   

The long time between repeat flights allows the Earth’s surface at the equator to be carved up 
into 233 longitude sections, the longitudinal width of which depends on each instrument.  For a 
passive instrument like AIRS with its wide 1650 km or 15o of longitude coverage every orbit and 
60% sampling of the globe each day, the 233 sections is not terribly important.  But for the 94 
GHz cloud profiling radar (CPR) on CloudSat (also in the A-train) which can only look straight 
down, carving the equatorial Earth into 233 longitudinally-narrow strips is quite relevant.  The 
cross-track resolution of the CPR is 1.2 km.  So every 16 days, the CPR covers 233*1.2 km = 
280 km of longitude or about 0.7% or the equatorial region (systematically never sampling the 
rest of the equatorial longitudes).   

The CALIOP LIDAR on CALIPSO (also in the A-train) has a 90 m instantaneous footprint 
which is smeared to 333 m in the along track direction by orbital motion over the LIDAR pulse 
duration.  CALIOP looks straight down so there is no scanning to produce a larger swath width.  
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So every 16 days, CALIOP covers 233*90 m = 21 km of longitude or about 0.05% or the 
equatorial region (again, systematically never sampling the rest of the equatorial longitudes).   

The power of these instruments lies not in the horizontal coverage but rather the unique 
vertical information they provide.  CPR provides 500 m vertical resolution and can penetrate 
through clouds to give the first 3D information on clouds globally.  CALIOP provides 30 m 
vertial resolution profiling of aerosols and clouds, far better than the 1 to 4 km can be achieved 
with passive measurements.  One hopes the sampling by these two high vertical resolution 
instruments, CPR and CALIOP, will produce a statistically representative sampling of the 
equatorial region.  These are key examples of the tradeoffs one must make with orbiting active 
instruments. 

 
 
 
References: 
See Turcotte and Schubert. 


