Critical aspects of cloudy boundary layers: what do we need to know?

Robert Wood, University of Washington

Intermodel SW feedback variability determined by low cloud changes

Bony, S., and J.-L. Dufresne (2005), Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, *Geophys. Res. Lett.*, 32, L20806, doi:10.1029/2005GL023851.

Key physical processes in the cloudy boundary layer

Stratocumulus, NE Pacific, July 2001

Trade cumuli, Antigua, Jan 2005

Varying cloudy PBL structure

Mesoscale cellular structure

GPS R-O observations of MBL depth

COSMIC (2006-2009), annual mean MBL depth

Cloud thickness of stratiform boundary layer clouds

MODIS cloud LWP, and cloud temperature, used to determine adiabatic h

PBL Clouds are thin!

Many MBL clouds have low LWP

Cloud droplet concentration *estimates* from MODIS

Use MODIS optical depth and effective radius to infer droplet concentration assuming adiabatic clouds

Turbulence and entrainment

Mellado (2010, J. Fluid. Mech.)

Cloud top and entrainment

Effect of changing entrainment efficiency

E = 1

E = 0.5

Entrainment critical for correct prediction of cloud LWP and therefore optical thickness

Stevens (2002)

Key considerations for spaceborne observations of PBL cloud structure

- Cloudy boundary layer almost everywhere shallower than 2 km, often as shallow as few hundred meters
- PBL clouds typically 200-500 m thick
- Drizzle very sensitive to small changes in LWP/cloud thickness, and to cloud droplet concentration
- Low liquid water path, scant/no information from space on vertical profile of LWP
- Need information on turbulence structure and entrainment

Sensor synergy – MBL profile reconstruction

Inputs:

MODIS LWP => cloud thickness, cloud top temperature pdf AMSR => SST, column WVP GPS => FT moisture, MBL depth AMSR-GPS => MBL moisture path

Outputs:

MBL moisture/temp stratification Inversion structure (trade wind MBL) Lapse rate (static stability in the MBL)

Wood and Bretherton et al. (J Climate, 2004)

Supplementary slides

Cloud feedbacks remain the leading source of uncertainty in future climate prediction

From Bony et al. (2006)

Tight couplings between SST, winds, and clouds

MBL depth/cloud top height estimates

POCKETS of OPEN CELLS (POCs)

www.atmos.washington.edu/~robwood

With independent cloud top height or MBL depth information

Lapse rate (MODIS CTT, CALIPSO CTH, SST)

Wu et al. (GRSL, 2008)