1. **Pluto's** orbit is far more eccentric than those of the major planets' orbits:

Aphelion: 7,375,927,931 km Perihelion: 4,436,824,613 km

- a. Determine the solar flux (watts/m²) at each of these distances.
- b. Assume the albedo is 0.7 in both cases. Determine the radiative equilibrium temperature at both distances.

2. Titan vs Earth atmospheric mass

How much mass is in a column of Titan's atmosphere relative to a column of Earth's air? Assume the two atmospheres are made up of the same gases (which is almost true because both are dominated by N_2). Assume Titan's surface pressure is 1.5 bars and its surface gravity is 1.35 m/s².

3. **Calculate the heat capacities** (both C_v and C_p) of He, H₂ and N₂ in both J/mole/K and in J/kg/K.

4. Rotational energy levels of a diatomic molecule

- a. Calculate the first 4 energy levels of each of the 3 rotational modes of N₂.
- b. Use the Boltzmann distribution to show that one of the 3 modes will not be populated at typical Earth temperatures.

The impact of doubling CO₂ on Earth's surface temperature

- 5. In the first figure in the notes on the motivation of studying atmospheric science, the IR radiative flux from Earth's atmosphere into the surface is 324 watts/m².
 - a. Based on the Stephan-Boltzmann law, what is the temperature of the atmospheric level that is radiating into the surface?
 - b. Assuming the Earth's surface temperature is 288 K and the atmospheric temperature decreases vertically at a rate of 6.5 K/km, at what atmospheric altitude is the IR radiation into the surface coming from?
- 6. The outgoing IR radiation to space of 235 watts/m^2 is composed of 3 terms: 165 watts/m^2 from the atmospheric gas, 30 watts/m^2 from the atmospheric clouds and 40 watts/m^2 from the surface.
 - a. Take the atmospheric portion: 165 + 30 = 195 watts/m². Based on the Stephan-Boltzmann law, what is the temperature that it is radiated from?
 - b. Assuming the same atmospheric temperature structure as in the previous problem, what altitude in the atmosphere is this being radiated from?
 - c. Assume that increasing CO_2 in the atmosphere causes the atmospheric portion of the IR watts/ m^2 to decrease by 4 watts/ m^2 , how much cooler is the new radiating temperature?
 - d. How much higher is the new radiating altitude than the original?
- 7. Assuming the vertical temperature gradient remains at 6.5 K/km, how much must the surface temperature increase to bring the Earth back into equilibrium?