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Dry Adiabatic Temperature Lapse Rate 
 

As we discussed earlier in this class, a key feature of thick atmospheres (where thick 
means atmospheres with pressures greater than 100-200 mb) is temperature decreases with 
increasing altitude at higher pressures defining the troposphere of these planets.  We want to 
understand why tropospheric temperatures systematically decrease with altitude and what the 
rate of decrease is.  The first order explanation is the dry adiabatic lapse rate.  An adiabatic 
process means no heat is exchanged in the process.  For this to be the case, the process must be 
“fast” so that no heat is exchanged with the environment.  So in the first law of thermodynamics, 
we can anticipate that we will set the dQ term equal to zero. 

To get at the rate at which temperature decreases with altitude in the troposphere, we 
need to introduce some atmospheric relation that defines a dependence on altitude.  This relation 
is the hydrostatic relation we have discussed previously.  In summary, the adiabatic lapse rate 
will emerge from combining the hydrostatic relation and the first law of thermodynamics with 
the heat transfer term, dQ, set to zero. 

 
The gravity side 

The hydrostatic relation is 

 

€ 

dP = −g ρ dz  (1) 

which relates pressure to altitude.  We rearrange this as 

 

€ 

−g dz =
dP
ρ

=α dP  (2) 

where α = 1/ρ is known as the specific volume which is the volume per unit mass. This is the 
equation we will use in a moment in deriving the adiabatic lapse rate. 

Notice that  

 

€ 

g dz ≡ dΦ =
Fg
m
dz =

dWg

m
=
dEg

m
 (3) 

where Φ is known as the geopotential, Fg is the force of gravity and dWg is the work done by 
gravity.  So g dz is the gravitational work per unit mass that is the work that must be done against 
the Earth’s gravitational field to raise a mass of 1 kg from some reference height (nominally sea 
level) to that height.  Combining the last two equations, we have 

 

€ 

dΦ = gdz = −α dP  (4)   

Integrating this to height, z, yields 

 

€ 

Φ z( ) = g dz
o

z

∫ '  (5) 

We can also define something called the geopotential height, Z: 

 

€ 

Z ≡
Φ z( )
g0

=
1
g0

g dz
o

z

∫  (6) 
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where g0 is the globally averaged acceleration due to gravity at the Earth surface normally taken 
as 9.81 m/s2.  Z is often used as a vertical coordinate either independent so that P(Z) or 
dependent, Z(P). 
 
 
The Thermodynamics side 

We return to the first law of thermodynamics 

 dQ + dW = dU + dEB (7) 

When we change the altitude of an air parcel, there are two energy transfers involving work,  
• One associated with doing work to raise the air parcel in Earth’s gravity field which 

changes the bulk potential energy. 
• the work associated with the air parcel decompression as the air parcel is raised to higher 

altitude and lower pressure. 
In the first type of work, remember that the vertical force on an air parcel that is not moving 

vertically is zero and in hydrostatic balance.  To move the parcel vertically means the vertical 
force balance of gravity and pressure is no longer exactly zero such that the air parcel accelerates 
vertically.  In this case, there is some work transferring energy to the bulk energy of the air 
parcel.  While this is necessary to move the air parcel vertically, this is not the energy transfer we 
are interested in right now. 

We are interested in the second type of work associated with the change in pressure as the air 
parcel is lifted (or lowered).  We assume the lifting is fast enough that there is no heat transfer to 
or from the air parcel.  In this case, 

 dW = dU (8) 

Substituting for both the work and the internal energy terms, we get 

 -P dV = m Cv dT (9) 

where m is the mass of the air parcel.  Using d(PV) = P dV + V dP, we get 

 V dP - d(PV) = m Cv dT (10) 

From the ideal gas law, PV = nR*T. Therefore 

 V dP - d(nR*T) = V dP - nR*dT = m Cv dT (11) 

In this case, n is the number of moles in the air parcel with volume, V, and the mass of the air 
parcel is given by m = n µ where µ is the mean molecular mass per mole of the gas molecules in 
the parcel.  Dividing through by the mass of the air parcel yields 

 

€ 

V
m
dP − n

m
R* dT = CvdT  

 

€ 

1
ρ
dP − n

nµ
R* dT =α dP − R*

µ
dT = CvdT  (12) 

 

€ 

α dP =
R*
µ

+ Cv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dT = CpdT  (13) 
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Combining (13) with either equation (2) or (4) from the gravity and geopotential derivation 
above, yields 

 

€ 

−g dz = CpdT  (14) 

So 

 

€ 

dT
dz

= −
g
Cp

 (15) 

 This is general, true for any planetary atmosphere.  For Earth, the heat capacity at 
constant pressure of air is approximately 1000 J/kg/K (you have a homework assignment on 
this).  The average gravitational acceleration at Earth’s surface is 9.81 m/s2.  So the dry adiabatic 
vertical temperature gradient is about -9.8 K/km.  The dry adiabatic lapse rate (defined as –
dT/dz) is about +9.8 K/km. 
 The dry adiabatic temperature lapse rate is the temperature change with altitude when the 
atmosphere is rapidly overturning.  The figure below provides an example. 

 
 

This figure above is a “skew T” plot of the Tucson radiosonde profile taken on Sept 22 at 00 
UTC in 2008 which is Sept 21, 5 PM local time.  Plotted on the figure are the temperature profile 
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(the thick solid white line), the dew point temperature profile (the thick green dashed line) which 
provides a measure of the vertical profile of water vapor and the wind profile which is the 
sequence of arrows along the right hand edge of the figure.  
 The thin solid white lines tilted to the right are lines of constant temperature. This tilt is to 
compensate for the fact that temperature generally decreases with altitude in the troposphere.  
The solid yellow lines that tilt to the left represent dry adiabats, which we are discussing at 
present. The dashed yellow lines that start out somewhat vertical near the surface and then tilt to 
the left at higher altitude (lower pressure) are moist adiabats.  The moist adiabat includes the 
effect of the latent heat release as water condenses out.   
 The temperature profile shows the interval between the surface and about 600 mb follows 
a dry adiabat or adiabatic temperature profile almost perfectly.  This is an indicator of a deep, dry 
convective boundary layer in which the air is rapidly overturning, in this case due to heating 
from the very hot surface below in our semi-arid region. 
 

Dry Adiabatic Temperature vs. Pressure and Potential Temperature 
 In equation (15) above, we determined the dry adiabatic lapse rate as a function of 
altitude.  We will now derive the temperature dependence on pressure for a dry adiabatic lifting 
or sinking process.  Starting with (12) from above 

 

€ 

1
ρ
dP − n

nµ
R* dT =α dP − R*

µ
dT = CvdT  (12) 

 

€ 

1
ρ
dP =

R*
µ

+ Cv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dT = CPdT  (16) 

From the ideal gas law,

€ 

P =
ρR*T

µ
, so 

 

€ 

ρ =
µP
R*T

 (17) 

Substituting this expression for density into (16) yields 

 

€ 

dP
ρ

=
dP
P
R*T

µ
= CpdT   

 

€ 

dP
P

=
µCp

R*
dT
T

 (18) 

 

€ 

d lnP =
µCp

R*
d lnT =

Cp '
R*

d lnT  (19) 

We integrate this 

 

€ 

d lnP
P0

P1

∫ = ln P1( ) − ln P0( ) = ln P1
P0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

Cp '
R*

d lnT
T0

T1

∫ =
Cp '
R*

d lnT
T0

T1

∫ =
Cp '
R*
ln T1
T0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   

Taking exp() of both sides and using the fact that exp(a ln[x]) = xa, yields 
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€ 

P1
P0

=
T1
T0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

C p '
R*

 (20) 

This shows there is a power law relation between pressure and temperature under dry adiabatic 
conditions. Note I have chosen to write the equations in terms of Cp’/R* (the molar form) rather 
than Cp/R, where R=R*/µ, because the relation is more obvious because Cp’ in Earth’s 
atmosphere is about 7/2 R*.  Therefore Cp’/R* is quite close to 7/2.  Now we rearrange (20) to 
obtain the dependence of temperature on pressure which is what we really want. 

 

€ 

T1 P1( ) = T0 P0( ) P1
P0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

R
C p

= T0 P0( ) P1
P0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

R*
Cp '

 (21) 

I have written T1 as T1 (P1) to make it clear that T1 is the atmospheric temperature at pressure = 
P1. Note that R*/Cp’ is quite close to 1/(7/2) = 2/7.   

Alternatively we can rewrite (21) as 

 

€ 

θ = T0 = T1
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p

= T1
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R*
C p '

 (22) 

where θ is known as the potential temperature.  (22) tells us that given air with a temperature of 
T1, at pressure, P1, the temperature of that air parcel would be θ if the air parcel were moved 
adiabatically to another pressure, P0.  On Earth, potential temperature is defined with P0 taken to 
be the average sea level pressure, 1013 mb. 

Note that a powerful feature of the potential temperature of an air parcel is that it is 
conserved under adiabatic lifting or sinking motion.  As a result, θ is very useful for determining 
the vertical stability of the air, that is its likelihood of overturning.  Potential temperature can be 
used as a vertical coordinate as long as the air is somewhat “stable”, that is temperature does not 
decrease with altitude as fast as the dry adiabatic lapse rate. 
 

Stable vs. neutral vs. unstable 
The potential temperature provides a way of determining atmospheric stability, that is 

whether or not hot air rises and cold air sinks.  The adiabatic lapse rate defines how the 
temperature of an air parcel will change when it is displaced.  What is important is the vertical 
temperature structure of the environment relative to an adiabatic lapse rate.  If the environmental 
temperature decreases more slowly with increasing altitude 

Stable (unstable) means the potential temperature of the environmental air column 
increases (decreases) with altitude. Neutral stability conditions occur when the potential 
temperature is constant with altitude which is usually the sign of active dry convection 

 dθ/dz > 0        stable 

 dθ/dz = 0       neutral 

 dθ/dz < 0     unstable 

We’ll draw some figures in class to go over this. 
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The oscillation frequency of displaced air parcels 
Consider the force on a displaced air parcel.  Its pressure is the same as the rest of the air 

at that altitude because pressure adjusts at the speed of sound which is much faster than the 
vertical velocity of the air parcel’s displacement.  However, the vertically displaced air parcel’s 
temperature differs from that of the surrounding air.  Therefore its density differs from that of the 
surrounding air.  Therefore the gravitational force on the air parcel differs from that on the 
surrounding air.  Therefore the air parcel is no longer in hydrostatic balance and there is a net 
vertical force on it and it will begin to accelerate vertically. 
 The net vertical force on the air parcel is the difference between the gravitational force on 
it and the surrounding air (which is in hydrostatic equilibrium).  Therefore   

 Fvert = g (ρparcel − ρenv)V = g Δρ V (23) 

where V is the parcel volume.  The density difference is  

 

€ 

Δρ = ρparcel − ρenv =
µP
R*

1
Tparcel

−
1
Tenv

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

µP
R*

Tenv −Tparcel
TparcelTenv

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

€ 

=
µP

R*Tparcel

Tenv −Tparcel
Tenv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = ρparcel

Tenv −Tparcel
Tenv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (24) 

The mass of the air parcel is ρparcel  V so the vertical acceleration of the air parcel is  

 

€ 

a =
F
m

=
gΔρV
ρparcelV

=
gΔρ
ρparcel

 (25) 

The fractional density difference between the air parcel and the environment is 

 

€ 

Δρ
ρparcel

=
ρparcel − ρenv

ρparcel

= −
Tparcel −Tenv

Tenv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (26) 

The temperature of the parcel rapidly displaced vertically by a small amount from z0 to z is given 
by  

 

€ 

Tparcel z( ) = T z0( ) + z − z0( )∂T
∂z adiabatic

 (27) 

The temperature of the environment is given by  

 

€ 

Tenv z( ) = T z0( ) + z − z0( )∂T
∂z env

 (28) 

So the temperature difference between the displaced air parcel and the surrounding 
environmental air is 

 

€ 

Tparcel z( ) −Tenv z( ) = z − z0( ) ∂T
∂z adiabatic

−
∂T
∂z env

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

€ 

Δρ
ρparcel

= −
Tparcel −Tenv

Tenv

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

z − z0( )
Tenv

∂T
∂z adiabatic

−
∂T
∂z env

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (29) 
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So the vertical acceleration of the air parcel is 

 

€ 

gΔρ
ρparcel

= −
g
Tenv

∂T
∂z adiabatic

−
∂T
∂z env

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ z − z0( )  (30) 

 

This can be expressed more compactly using the potential temperature. 

 

€ 

θ = T0 = T1
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p

= T1
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R*
C p '

 (22) 

 

€ 

∂θ
∂z

=

∂ T1
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

∂z
=

P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
+ T1

∂
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

∂z
=

P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
+ T1 P0

R
C p[ ]

∂ P1
−
R
C p

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

∂z
 

 

€ 

∂θ
∂z

=
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
+ T1P0

R
C p −

R
Cp

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ P1

−
R
C p

−1 ∂ P1[ ]
∂z

=
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
−T1

P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p R

Cp

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
1
P1

∂ P1[ ]
∂z

 

but d ln(P)/dz = -1/H = g/RT so 

 

€ 

∂θ
∂z

=
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
−T1

P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p R

Cp

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

g
RT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
+
g
Cp

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (31) 

We divide through by θ to get 

 

€ 

∂θ
θ ∂z

=

P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p ∂T1

∂z
+
g
Cp

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T1
P0
P1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

R
C p

=

∂T1+
∂z

g
Cp

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T1
= −

−
g
Cp

−
∂T1
∂z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T1
= −

∂Tadiabatic
∂z

−
∂T1
∂z

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

T1
 (32) 

Combining this with the equation above yields 

 

€ 

gΔρ
ρparcel

= −
g
Tenv

∂T
∂z adiabatic

−
∂T
∂z env

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ z − z0( ) =

g
θ
∂θ
∂z

z − z0( )  (33) 

 
Notice the parcel’s vertical acceleration has the form of the simple harmonic oscillator (SHO),  
F/m = a =-k/m x where 

 

€ 

k
m

=
g
θ
∂θ
∂z

 (34) 

The frequency of a SHO is derived as follows 

 

€ 

F = ma = m d2x
dt 2

= −kx  (35) 
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€ 

a =
d2x
dt 2

= −
k
m
x  (36) 

Taking the solution to be sinusoidal:  x(t) = X sin(ωt + φ) then 

 

€ 

dx
dt

=ωX cos ωt + φ( )  

 

€ 

d2x
dt 2

= −ω 2X sin ωt + φ( ) = −ω 2x = −
k
m
x  (37) 

Therefore the oscillator frequency in radians per second is (k/m)1/2.  So the frequency of the 
oscillation of a displaced air parcel is  

 

€ 

ω = N =
g
θ
∂θ
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/ 2

 (38) 

This is known as the Brunt-Vaisala frequency.  The more stable the air is, that is the larger dθ/dz, 
the strong the restoring force to displaced air parcels and the faster they oscillate.  Notice also 
that the acceleration is proportional to N2.  
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Temperature related climatology figures from Peixoto and Oort (2002) 
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January minus July average surface temperatures 
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Diurnal cycle on Mars      

  

  


