Lecture 18
Atmospheric Radiation, which includes but is not limited to visible light, comprises waves of electromagnetic fields that travels through space at the speed of light.  

We derived the nature of a plane wave from Maxwell’s equations, and further noted that any arbitrary plane wave can be broken down using a Fourier transform into a superposition of “monochromatic” planewaves, each having wavelength  and frequency
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.  This wave travels at the speed of light, c, and follows c = 
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We also defined a wavenumber k, which is just the reciprocal of frequency.  For consistency with the text, we will now change variables, so that  represents wavenumber, and we’ll save k for another variable.  Note that c = 
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, so wavenumber is closely related to frequency.

We showed that if we consider the energy contained within a the radiation field at a given point x, we need to keep track of several things:  1) the direction the radiation is coming from, , 2) the frequency or wavelength of the light, and 3) the amount of energy transported across a reference surface by the wave, and 4) the polarization of the wave.

Because of all these free parameters, the key variable we keep track of is called the monochromatic intensity, I(x, , ), which tracks everything but polarization.

Specifically, I is equal to the radiant energy (J) crossing a unit surface (m-2), per second (s-1), having a frequency between  and +d (1/s-1 = Hz-1), and coming from a small range of directions having solid angle d, (Sr-1) direction   Put this together, and monochromatic (or spectral) intensity has units of W m-2 Sr-1 Hz-1.

Let’s think of this another, more tangible way.  Consider a small, perfectly absorbing ball of radius R placed in the center of the room you’re in.  The total radiant energy that this ball absorbs would be measured in Joules.  The rate at which the ball is absorbing this energy is measured in Joules per second, or Watts (W).  This is called the “radiant flux”.  Now, consider a small patch of area on the sphere – small enough to be considered a flat surface of area d.  The radiant flux crossing this area, per unit area, is a way of localizing the radiation field exactly at that point, and normal to the orientation of that surface.  This is called the radiant flux density, and depends on the orientation of the surface (for example a small patch on the sphere facing a light will get more radiant flux across it than one facing obliquely to the light, which will get more than a patch on the opposite side of the sphere).  Often times, we just say “flux” when we mean radiant flux density, which is the source of some confusion at first.  Units for radiant flux density are W m-2.  Now lets talk about light coming from a very specific direction, , having solid angle d. What is that, this solid angle?

Review of Solid Angle

Mathematically:  Consider yourself at the center of a large sphere – much larger than you are – of radius R.  Now consider any arbitrary closed line drawn on the surface of that sphere, outlining a patch of area A.  Sitting at the center of the sphere, you can think of the range of all directions pointing from you towards some spot on the patch.  The solid angle subtended by this range of directions is just the Area of that sphere divided by the square of the radius of the sphere,  = A/R2.  The units of  are called “Sterradian”

Analogy with angle:  An angle is defined similarly, but for a circle.  If we imagine an arc along a circle, the angle in radians is simply the length of the arc, l, divided by the radius of the circle, R, such that  = l/R.

Example:  How many Sterradians are there in a sphere?  For a sphere, A = 4R2, so 

 = 4 Sr.  4 Sr is the upper limit on solid angle, since it contains ALL ranges of directions, just as 2 is the upper limit for radians.
Example 2: How many Sterradians are there in the sky?  If we consider ourselves within a large sphere, the sky subtends the upper half of that sphere.  The area of a hemisphere is 2R2, and so the solid angle of the sky must be 2 Sr.
Definition for irregular surfaces:  If you have some patch A that is not sitting on the surface of a sphere, you can imagine the Area projected upon the surface of a unit sphere surrounding a point.  The area of this projection will be equal to the solid angle of the patch viewed from the center of the sphere.

In differential calculus:  In polar coordinates, we define a differential amount of area as being rddr, where dr is the length of the patch in the radial direction, and rd is the length of the patch in the polar coordinate.  Similarly, when we consider a small volume in spherical coordinates, we look at the product of the lengths of the three sides, dr (radial), rd (polar), and rcosd (azimuthal).  dv = r2cosdd.  An infintessimal unit of surface area in spherical coordinates is the product of the two lateral sides, r2cosdd.  For spherical coordinates, we define the differential element of solid angle 

d = cosdd
Note that this is just the differential element of area divided by the radius squared.

Conceptual decription  A range of directions can be defined by imagining looking through a cone you might make with these notes if they were rolled up.  This range of angles subtends a solid angle of A/R2, where A is the area of the front opening of the cone, and R2 is the length of the cone.  If the field you’re looking at is uniform (like the whiteboard), then the amount of light admitted into the cone is proportional to the solid angle.  As you roll the paper up to infinitesimal solid angle, you are really narrowing down your field to seeing the light from a single direction.  You end up with what is called a “pencil” of radiation.  We can quantify the directional nture of the radiation field as the flux admitted through a cone of infinitesimal solid angle pointing in direction .  The flux you receive divided by the small solid angle is called the Intensity, or Radiance, I = dF/d.  

Now lets go back to our black sphere in the middle of the room.  Consider the infinitesimal patch of area dA on the surface of the sphere.  Now consider the small range of angles extending in direction  of solid angle d.  The radiant energy crossing the patch from this small range of angles dE = I d dA dt n·, where n is the direction normal to the surface of the patch.  n· is the cosine of the angle that the normal makes with the incidence direction.  The reason this comes in is because we define the intensity as the energy carried by a wave per unit surface area normal to the wavefront.  But our patch isn’t necessarily normal to the wavefront.  The projection of the surface patch onto the surface normal to the wavefront is equal to n·.  

The final refinement is to only consider the radiation having wavenumbers between  and +d.  We define a spectral intensity, I, such that

dE = I d d dA dt n·.

or in terms of flux density,

dF = I d d n·.

If we don’t consider polarization, I pretty much describes as much as there is to describe about the radiation field at a given location.  We also see that it has units W m-2 Hz-1 Sr1.
So the total flux density crossing a surface is given by
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Note that I use the 2 integral limit for the solid angle integration as a substitute for;
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where the 2 signifies the solid angle subtended by the upper hemisphere.  In this coordinate frame, the zenith is the normal to the surface.

We also often use the simplification that d(cos) = -sind.  Using this fact, we can change polar coordinate systems from  to  = cos, and have
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Example 3: What is the total energy absorbed by the sphere in our example in some time t?
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Note that there are TWO solid angle integrations here.  One considers all patches on the surface of our sphere, the second considers all ranges of direction visible to a given patch.  Since each patch is associated with a different normal vector n, we have to switch to a coordinate system that generalized the directions n and . 

The complication here is that the range of integration for incidence direction for a given patch depends on the orientation of the patch itself (i.e. n). So we’ll be clever and reverse the order of integration – first we consider a single incidence direction, , and then integrate over the hemisphere that faces that direction.  In this coordinate system,
n · = cos
Expanding the solid angle integrals into their component parts (d and d), and assuming the radiation field is constant in time, we get
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Example 4:

If the net solar flux density at the Earth is 1368 W m-2, what is it at the Sun’s surface?
Here we take advantage of conservation of energy.  Consider two spheres surrounding the Sun.  The first is the Sun’s surface, of radius is RS(= 6.955 x 105 km.  The second sphere has a radius of Earth’s mean distance from the center of the Sun, DE-S = 1.496 x 108 km.  Since there is no appreciable absorption of solar radiation in this volume, the amount going into the volume across the inner surface must equal that going across the outer surface.  That is Pin = Pout, where P(r) = 4r2F(r).  Thus

F(r) = Pin/4r2
This is an inverse square law, because it deals with a single source of radiation, not a plane wave.  Solving in terms of our boundary conditions we have,

F(RS) = F(DE-S) (DE-S/ RS)2 = 1368 W m-2 (DE-S/ RS)2 = 63.3 x 106 W m-2.

Example 5:  What is the Intensity of Radiation coming from the solar disk?  Calculate it both from the perspective of Earth, and from that from the surface of the sun.
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