HW #1 Solutions


Here we test an old adage that states that – based on the experience of golfers and other ball players – that humid air is denser than dry air due to the additional water mass hanging in the air.  

To attack this problem, we first assess the importance of H2O to the molecular weight of water globally.  To solve (1a), we use a mean surface pressure of 985 mb, a column H2O mass of 100 kg m2.  We note that air density is given by
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We know that the effective molecular weight of any gas is the ratio of its mass to the # moles contained within
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For air, which is a mixture of dry air and moist air, we must add the contributions of each, where m = md + mv.
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The problem specifies mv, and you can derive m from a mean surface pressure of 985 mb and
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As long as we have mx and Mx, we can derive Nx = mx/Mx.  This yields
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Since mv/m is conveniently = 0.01, and Md/Mv – 1 = 0.61, we get M = 0.9939 Md.  That is, on average, water vapor reduces the molecular weight of air by about 0.61%.

We can use this result to say that – at constant temperature and pressure – moist air is less dense than dry air.

In problem 1b, we illustrate that the assumption of constant pressure is not a good one.  Hydrostacy states that if we removed the world’s water vapor, we would violate the assumption of constant pressure.  The new surface pressure is 975 mb because 10 mb of the weight (100 kg/m2 * 9.8 m/s2) was due to H2O.  That is, 1% of the Earth’s atmosphere (by mass) is H2O, so the pressure would decrease by 1% if it were removed.  In Problem 1c we see that the 100 kg/m2 of H2O, if converted to liquid water, would cover the Earth with a (100 kg/m2/ 1000 kg/m3 =) 0.1 m layer of liquid water = 10 cm.  Divide this by the fraction of Earth’s oceans, and you get a 14 cm sea level rise.  Not a huge amount compared with the 4000 m depth of the ocean.
Now if we were to assume that H2O is well mixed through the atmosphere, we can see that it increases surface pressure by 1% (compared to the dry case), and decreases surface molecular weight by 0.61%, with a net effect of making surface air pressure more dense by .39%, since 
[image: image6.wmf]T

R

pM

*

=

r

 ( 
[image: image7.wmf]0039

.

0

1

)

0061

.

0

1

)(

01

.

0

1

(

+

=

-

+

=

=

d

d

wm

h

d

wm

M

p

M

p

r

r

.  This temporarily vindicates our “humid air is thicker” proponent.

In problem 2, we assume a more realistic vertical distribution of water vapor by asserting it has a 3 km scale height.  [Note: a scale height of 2 km for H2O would have been a more representative climatological value.].  The first part is to use this information to find the surface concentration of H2O.  Since the H2O scale height is lower than that of air (6-9 km), we have a larger influence of H2O on the surface molecular weight, but the same hydrostatic effect on pressure.  As I showed in class, a 100 kg/m3 profile with a 3 km scale height leads to a surface density of 100 kg/m2 / 3000 m = .033 kg/m3.    If we had assumed the same scale height as that of dry air (about 7.5 km), we would have had a concentration that was 2.5x lower.  Thus the influence of H2O on molecular weight at the surface is 2.5x that of the average over the whole atmosphere.  Using the same expression as above, but increasing mv/m by a factor of 2.5, we end up with Mh3 = (1 – 2.5*.006)Md.  This is a 1.5% reduction in molecular weight, which more than compensates for the 1% increase in surface pressure, leading to less dense surface air.
Now problem 3 considers two more relevant extremes.  The first is when humidity is added locally (but not enough to change hydrostatic pressure) and the second is when temperature also drops.  (Note that here I am interpreting the % humidity as being by mass, not by number, or pressure.)  The effect of a 2% by mass increase in humidity through molecular weight alone will decrease surface air density by about 1.2%, since pressure remains constant.  
However, when temperature decreases by 5°C, this constitutes a ~1/60 drop in surface air temperature, which introduces a factor of (1 – 0.0167) to the denominator.  This increases density by about 1.7%.  The net effect when you include the cooling of 5°C is to increase density by .5%
If I had interpreted the change in humidity as a change in the mole-fraction (as I believe I advised many of you), this corresponds to a factor of .622 less change in humidity compared to if the change were in mass fraction.  In this case, the smaller change in humidity will result in a .74% decrease in density due to the humidity effect, making the total increase in density about 1%.
The derivation of the following solution to the first part of problem 4 was done in class
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(Note that if we choose the dry adiabatic lapse rate, the exponent simplifies to the familiar cp/R = 7/2 for dry air.).  To understand the effect on 10 km pressure of a small change in T0, we simply solve for dp/dT0
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In the original case, p(10km) = 264 mb.  p = 1.4 mb.  So a global warming of 1 degree would cause 10 km pressure to increase by about 1.4 mb.
In the end, balls go slower in humid air because the humidity changes the surface properties of the ball itself, by increasing the surface roughness, moisture content, elasticity, and other properties.  So all this talk about air density has been kind of a moot point from the perspective of sports physics.
MATH NOTES TO HELP WITH FUTURE HOMEWORKS.

Some of you may not be familiar with how powerful linearization can be when doing back-of-the-envelope problems like this.  The basic idea is that when doing algebra problems, we can eliminate terms that are much smaller than the level of accuracy we have or desire.  For example, I very quickly made the change that Md/(1 + 0.00622) = Md(1 – 0.00622).  This stems from the fact that 1/(1-x) = 1 + x + x2 + x3 + …  Since x is already small, x2 and higher terms (called O(x2) for “of order x2”) will be negligible, so we can ignore them.  Along these lines, I also make the simplification that (1 + 0.01)(1 – 0.00622) = (1 + 0.01 – 0.00622).  This is because 0.01*0.00622 will be negligible compared to the other terms.
Taylor’s expansion is very useful when linearizing functions:

f(x) = f(x0) + f’(x0)(x – x0) + f’’(x0)(x-x0)2/2! + f’’’(x0)(x-x0)3/3! + …

For example, ln(x0+x) = ln(x0) + x 0-1x - x 0-2x2/2 + …
If we take x0 = 1, this simplifies to 

ln(1+x) = x – x2/2 + …

Now if x is small, then ln (1+x) ~= x.

There are lots more examples where linearization is useful when doing problems that involve small terms and nonlinear equations.  For example, in problem 2’s solution I asserted that when surface concentration of water vapor goes up by a factor of 2.5, then mv/m went up by 2.5.  What I ignored is that m also changed.  But since the change in the numerator is a factor of 2.5 and the change in the denominator will be only a couple of percent, we can ignore the change in the denominator, as I did above.  The solution to problem 4 is also an example of linearization, because it takes advantage of the fact that T0 is so small compared to T0.  This lets me explicitly keep only the 1st two terms of the Taylor expansion of p(z; T0) about T0 = 288 K.
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