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SUMMARY 
The isomorphism between the theory of electrostatics and the quasi-geostrophic potential vorticity is extended 

to the Ertel-Rossby potential vorticity. Anomalies of mass-weighted potential vorticity are defined relative to an 
arbitrary zonal-mean or horizontal-average flow and given in terms of the divergence of a vector field. The vector 
is the sum of linear and non-linear contributions and can be written as a dielectric tensor acting on the geopotential 
gradient. The linear components of the tensor differ from those for the quasi-geostrophic potential vorticity only 
if there exists a vertical variation of background potential vorticity, such as occurs at the tropopause, or if there is 
shear of the assumed background flow. The non-linear components are absent in the quasi-geostrophic case. 

The forms of free, bound and total charge are defined for accurate non-linear forms of the potential vorticity. 
The free-space Green’s function for the operator defining the total charge is identical to that for quasi-geostrophic 
theory and provides a scheme whereby the field attributed to each potential vorticity element is an invariant 
quantity. One of the most important results arising from this formulation is that the non-linearities in the definition 
of potential vorticity can be neglected when considering the far-field effect of potential vorticity anomalies. An 
analytical example of these ideas is given for a uniform anomaly of semi-geostrophic potential vorticity embedded 
in an otherwise uniform background potential vorticity. The dielectric constant and bound charge are calculated 
and give a clear insight into the differences between this and the quasi-geostrophic solution. 
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1. INTRODUCTION 

In Bishop and Thorpe (1994) (hereafter BT) the isomorphism between a quasi- 
geostrophic potential vorticity anomaly and a static electrical charge is described. This 
gives a convenient picture of how potential vorticity (PV) anomalies are associated with 
streamfunction fields. In this paper we consider the extension of these ideas to the Ertel- 
Rossby form of the PV. The PV can be written in a form proportional to the divergence of 
a vector field: PV = l /pV . ((0). The vector field is the product of the three-dimensional 
vorticity vector, 5, and the potential temperature, 8. The divergence form of the Ertel- 
Rossby PV is fundamental because it shows that the mass-weighted volume integral of PV 
only depends on the normal component of the vector field at the boundaries. This property 
is a familiar one and is shared by the quasi-geostrophic form and electrical charges and 
their fields. 

There is, in principle, a substantial difference between the quasi-geostrophic form (4) 
and the full form (PV) for the potential vorticity. The former is a linear quantity which 
can be interpreted as a modification of the vertical component of absolute vorticity. On the 
other hand the PV is a quadratic quantity with contributions from the product of vertical 
component of vorticity and static stability. One might conclude therefore that there was no 
electrostatics analogy for PV but this proves not to be the case. The electrostatics analogy 
described here helps to bridge the conceptual gap that exists in interpreting effects due to 
anomalies of quasi-geostrophic and Ertel-Rossby PV. 

Here it will be shown that the field due to an Ertel-Rossby PV anomaly is composed of 
a linear and a non-linear component. This non-linear part is large only close to the anomaly 
and is interpretable in terms of bound charge, as introduced by BT. It is known in quantum 
mechanics, Bjorken and Drell(1964), that very close to an electric charge Coulomb’s law 
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is modified in a non-linear way to include the effect of a so-called vacuum polarization. 
This is a quantum effect best visualized in terms of the seemingly contradictory notion 
of a polarizability of the vacuum. Hence there is a conceptual similarity between the two 
systems. 

The motivation for this research is to cast light on the problem of attribution where the 
flow and temperature associated with particular PV anomalies are sought. This is required 
within the framework of piecewise PV inversion as discussed by Davis and Emanuel 
(1991). The insight provided by the analogy with electrostatics gives a framework based on 
physical reductionist principles to interpret the building blocks of atmospheric dynamics, 
namely PV anomalies. This analogy relies heavily on the field theoretical approach of 
electrostatics. The non-linearity of the field, although a complication, does not imply that 
the attribution concept is flawed. As discussed by BT and by Davis and Emanuel(l99l) 
the role of the Earth’s surface is also a complication but one which is present in analogous 
electrostatic systems such as a charge adjacent to a conducting sheet. Further discussion 
on the notion of attribution can be found in BT and in Bishop (1995a, 1995b). 

Here we show that the electrostatics analogy applies to highly accurate estimates of 
the PV such as those based on non-linear balance. In section 2 the general theoretical 
framework is established. Results are then summarized in section 3 in the simple case 
of geostrophic flow on an f-plane (section 2 can be omitted by readers content with the 
summary of section 3). In section 4 a comparison is made with the quasi-geostrophic 
formulation given in BT. The symmetries of the semi-geostrophic system permit elegant 
analytic solutions, presented in section 5 ,  from which a precise description of non-linear 
bound charge has been made. 

2. Pv AND ELECTROSTATICS -BEYOND QUASL-GEOSTROPHY 

The purpose of this section is to demonstrate the analogy between electrostatics and 
PV for forms of the PV which are considerably more accurate than the quasi-geostrophic 
approximation. As we shall show, an analogy to electrostatics can be made whenever the 
Ertel-Rossby PV can be accurately approximated with the form, 

where 4 is the geopotential, @ is the streamfunction for a non-divergent part of the flow, 
p is density, f is the Coriolis parameter, and Q, is a constant potential temperature. The 
hydrostatic approximation has been made in Eq. (l), viz ac#J/i3z = g8/$ ;  this relationship 
for 8 results from making the quasi-Boussinesq approximation in which a reference density, 
depending on height alone, is used. As discussed by Xu (1994), the flow approximation is 
accurate whenever the rate of change of the vorticity associated with the divergent part of 
the flow together with its advection, tilting and stretching, can be neglected. This is a good 
approximation for synoptic scale systems. Xu argues that smaller scale meteorological 
phenomena such as fronts, curved fronts and some mesoscale vortices should also be 
well represented by this type of approximation. Raymond and Jiang (1990) and Raymond 
(1 992) have shown, by direct simulation, that models which use PV in the form given by 
Eq. (1) can produce realistic descriptions of some types of mesoscale convective systems. 

To define anomalies of PV it is necessary to subtract from the local PV an appropriate 
background distribution. We decompose the fields into a geostrophically balanced basic 
state flow, indicated by an ovcrbar, dependent on latitude, y ,  and height, z ,  in an arbitrary 
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way and a deviation from the basic state, indicated by a prime: 4 = +(y, z )  + $’(x, y ,  z ,  t )  
and @ = $ ( y ,  z )  + @’(x, y, z ,  t ) .  The basic state mass-weighted PV is then given by 

where 5 = f + a2$/ay2. 
To proceed it is convenient to define a reference mass-weighted potential vorticity, 

poPVo = foN,2do/g,  where subscript 0 indicates a constant value and N is the Brunt- 
Vaisaila frequency. To introduce the electrostatics analogy we use these definitions to 
define an anomaly of potential vorticity charge density as: 

e; = foP(PV - m / ( P o p v o )  (3) 

Note that it is the mass-weighted potential vorticity, pPV, that appears in this defi- 
nition. Haynes and McIntyre (1990) refer to this as the amount of PV substance per unit 
volume and hence it satisfies the conservation properties mentioned there. It is consistent 
with Haynes and McIntyre’s definition of PV substance to refer to eh as the free PV charge 
density. The subscript f indicates that this part of the PV field is analogous to the free 
charge in electrostatics; i.e. it is this part of the mass-weighted PV field that can be moved 
by advective and other fluxes along isentropes; cf. Haynes and McIntyre (1990). 

The definition of the ‘free’ potential vorticity charge density in Eq. (3) is in accord 
with the original definition of potential vorticity given in Rossby (1940). In this context 
Rossby’s potential vorticity would be defined as fo(PV/PVo - 1); i.e. it is the relative 
isentropic vorticity the air would have if returned to a standard latitude and static stability. 
It has the advantage of having the dimensions of vorticity, as perhaps is appropriate for 
a ‘potential’ vorticity. Transfer of the name potential vorticity, coined by Rossby, to the 
vorticity invariant ( l / p ) g  . Vd, defined by Ertel(1942), appears to have occurred following 
the publication of Reed (1955). 

For attribution it is important to describe how e; is inverted to find that component 
of the flow and temperature that can be associated with the PV anomaly. In order to 
invert e;, one must have a relationship between $’ and 4’. Such a relationship is provided 
by the divergence equation. Here an approximate version of the divergence equation is 
utilized consistent with the assumption of balanced flow, (e.g. Xu 1994; Davis 1992; 
Raymond 1992; Gent and McWilliams 1983). Note, however, that if the rate of change of 
divergence is known, there seems to be no reason why the PV cannot be inverted using the 
unapproximated divergence equation (Bates et al. 199.5). Assuming that the basic state is 
geostrophically balanced, the divergence equation can be written in the form: 

Vf4’ = Vl(f@’) + V . (FI + F2) (4) 
where Fl and F2 represent those terms which are linear and non-linear in @’, respectively, 
and 0; represents the horizontal Laplacian operator. Symbolically the inversion of (4) can 
be written as: 

q5’ = f 9’ + 4: where 4; = 4; + 4; (54 

(33) 

and 

4’ - - v-2 ,, (V . F1) while 4; = VL2(V. F2) 

In this equation 4; and 4; represent parts of the geopotential field which have a linear 
and non-linear dependence on @’, respectively. The VC2 symbol represents the inverse 
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horizontal Laplacian operator. Using (5) in (3) and grouping linear and non-linear terms, 
one finds that 

+ the divergence of non-linear terms in @’ (6) 
where {’ = V;$‘. 

The main aim in this paper is to establish a framework in which the field associated 
with each element of PV charge is an invariant quantity; that is, it is independent of 
the properties of the medium such as the static stability profile. Since electrostatics is 
formulated in this way, it is used here as a guide. The property of invariant attribution is 
attained in electrostatics by insisting that the operator defining total charge is an invariant 
quantity. The free space Green’s functions* associated with this operator are themselves 
invariant and hence make the field attributed to each element of charge an invariant quantity. 
An important point to recognize is that the total charge is only equal to the free charge in 
the idealized situation of a charge in free-space; i.e. the part of the charge field that can 
be moved around in a conservative manner is generally not associated with an invariant 
operator. Thus, to make the notion of action-at-a-distance as clear in PV thinking as it is 
in electrostatics, we need to define a total charge of PV substance, ei. This is defined by 
an invariant operator which is equivalent to the free charge of PV substance, ei, in some 
idealized circumstance. An idealized circumstance which reduces the operator defining ek 
to an invariant occurs if  

(a) & and $ are independent of x and y with a2$/az2 = No2 a constant, 
(b) the Coriolis parameter is constant; i.e. f = fo, 
(c) 4’ and $’ are in geostrophic balance; i.e. 4; = #; = 0, 
(d) the non-linear terms are negligible. 

This idealized background state has, in fact, a PV equal to the reference (constant) 
PVo defined earlier so letting $0 and $o define this state and substituting into (6) gives the 
definition of total charge density; viz, 

a2$’ a$o a2$‘ a& 
axaz az ’ ayaz az 

- ~ _ _  --- 

Remarkably, the total PV charge density for highly accurate forms of the PV is 
equivalent to the total charge PV density given in BT. t This shows that the same electro- 
statics analogy applies to both quasi-geostrophic and Ertel-Rossby potential vorticities. 
The Green’s function for the operator defining (7) implies that the part of the streamfunc- 
tion field, 6 $ ,  attributable to each element, ei6 V, of the PV substance contained within an 
infinitesimal volume 6 V is 

1 e’6V 
Ai/r = -- f ~ \  

* By free space Green’s function, we mean the Green’s function subject to the boundary condition that all derivatives 
of the state variable diminish to zero at infinity. Also, recall that the operator defining total charge in electrostatics 
is the three-dimensional Laplacian and that the state variable which is operated on is the electric potential. For the 
type of PV discussed here the state variable is the streamfunction, 9. 

In fact the quasi-geostrophic form has the complication of including the air density within the vertical derivatives. 
The Ertel-Rossby PV substance has no such complication. 
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where r2 = ( x  - xo)2 + (y - yo)2 + [ (No / fo ) ( z  - z0)I2 and (xo, yo, zo)  is the position of 
the element. Thus, e:6V gives the total charge in an elemental volume and 6$ gives the 
field induced by that element of charge. As in electrostatics the difference between the 
total charge and the free charge is the bound charge e i  = e: - ei. Subtracting (6) from (7) 
gives 

where ebL and ekN are linear and non-linear functions of I+Y, respectively. The algebraic 
expressions for these quantities are 

and 

At this point, note that the vectors defined by the square brackets in Eqs. (7), (Sb) and 
(8c) are, respectively, the counterparts of the electric field and polarization vectors used 
in electrostatics. In electrostatics these vectors can always be defined in terms of some 
combination of the components of the gradient of electric potential. However, the above 
expressions are in terms of the components of the vorticity vector and the perturbation 
potential temperature and not in terms of the components of the gradient of the state 
variable I+V. Given the importance of the vorticity vector in potential vorticity, this is not 
surprising. However, the divergence of the vorticity vector is zero and it turns out that (7) 
and (8) can be written in terms of the divergence of a vector whose components are made 
up of the components of the gradient of the streamfunction and the vertical derivative of 
$1. The alternative expression for the total charge is 

Here, the term in brackets gives the counterpart of the electric field vector. 
For the bound charge, Eq. (8c) already gives the non-linear part of the bound charge 

in terms of products involving first order derivatives of +', 4; and @:. The linear part, ebL, 
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can also be expressed in such a form. This involves rewriting Eq. (8b) in the following 
way (which is not obvious at first sight): 

where N 2  = a2$/az2 is the static stability of the background state in which the PV anomaly 
is situated. Here, the term in the square brackets gives the negative of the counterpart to 
the polarization vector. Note that provided NO is less than or equal to N the horizontal 
part of the polarization vector will tend (provided a2+/ayaz is small) to point in the 
same direction as the electric field vector. Thus, provided NO is chosen in this way, the 
bound charge at a point will tend to be of the opposite sign to both the total and free 
charge. Since the free charge is just the difference between the total and bound charge, it 
is also expressible in terms of first-order derivatives of $’, 4; and 4;. Its full form is rather 
cumbersome to write down but in the special case of geostrophic balance on an f -plane, 
it takes on a simpler form which will be explored in the next section. 

3. GEOSTROPHIC BALANCE ON AN  PLANE 
Here a summary of the formulation is given making the assumption, for simplicity, 

that the flow associated with the PV anomaly is in geostrophic balance on an f -plane. In 
this case the free PV charge, as defined in Eq. (3) ,  becomes: 

e; = e& + e d  ( 1 W  

where 

and 

The terms in square brackets define the displacement vector for geostrophically bal- 
anced PV fields. From these vectors, we may write down the dielectric tensor for PV fields, 
i.e. e; = V + D, where the vector D’ is defined as: 

D’ = (EL + EN)V$’) (12) 

where E = E~ + E~ is the dielectric tensor with components E~~ with i and j ranging from 
1 to 3.  The linear and non-linear components have been separated viz: e;Z = V . (ELV$’) 
and e;N = V - ( E ~ V $ ’ ) .  From inspection of Eq. ( l l b j  the components of the linear part of 
the dielectric tensor, eL, are: 

s2 f ” F  
EL: E l 1  = E22 = - 

N,2’ E33 = 2’ NO 

and other components zero f O &  
N,2 

E23 = €32 = ~ 
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The only non-zero part of the non-linear component, E ~ ,  is proportional to the relative 
vorticity vector of the anomaly i.e. 

, Vi@‘) and other components zero (13b) 

Thus the linear part only depends on the background static stability and flow. However, 
the non-linear part depends on the geopotential itself via the relative vorticity; this is not 
known until the inversion solution has been obtained. 

Following the electrostatics analogy we have defined a total PV charge, ei, to be 
independent of the properties of the basic-state atmosphere: e: = V . (eOV@’). Here E~ 
is the equivalent of the permittivity of ‘free-space’ and is defined from Eq. (9) by the 
following components: 

Eg:  E l 1  = & 2 2  = 1, & - ’02 and other components zero 
33 - N,2’ 

The definition of the bound PV, e;1 = ei - e;, equivalent to the polarized charge in 
electrostatics is therefore: 

eb = -V . [(E - E~)VI,V] (15) 

In the quasi-geostrophic case, as described by BT, the bound PV was due to the 
equivalent of a vertical polarization (as E - is only non-zero in the vertical component; 
see section 4(a) below). It can be seen that in general the Ertel-Rossby case bound PV 
is due to a linear contribution with both horizontal and vertical polarization and a new 
non-linear contribution associated with e;N. Therefore, the non-linear parts of the PV are, 
in this electrostatics analogy, components of the bound charge. This provides an attractive 
physical picture of the differences between the fields attributable to Ertel-Rossby and 
quasi-geostrophic forms of the PV. 

The field induced by the non-linear part of the bound charge will now be shown to 
rapidly diminish with distance away from an isolated free PV charge. The net non-linear 
bound charge in a volume is equal to the volume integral of ebN. By Gauss’s theorem, 
this integral is equal to the flux of the polarization field through the surface containing 
the volume. Suppose that the amplitude of @’ was inversely proportional to the distance r 
away from a localized free PV anomaly. Then, using the fact that ebN = -eh (as described 
in section 2) and using Eq. ( l lc) ,  the non-linear part of the polarization field would be 
proportional to l / r 5 .  Consequently, the bound charge contained in a sphere of radius 
r enclosing the anomaly would be proportional to 1/r3. Thus, the total bound charge 
associated with this isolated free PV anomaly is zero and hence its effect on the far-field is 
zero. Note also that, in this case, the amplitude of the bound charge would be proportional 
to 1/r6. This qualitative discussion suggests that the effect of the non-linear part of the 
bound charge on the streamfunction field is localized near isolated anomalies and may not 
affect the far-field features of the streamfunction field. 

Note that the above argument applies equally well to the less approximated form of 
the non-linear part of the bound charge given in Eq. (8b). In section 5 ,  we illustrate this 
localization of non-linear bound charge with an example from semi-geostrophic theory. 
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4. COMPARISON WITH THE QUASI-GEOSTROPHIC PV 

(a)  Dielectric tensor 
A simplification to the general theory described in the previous section is provided by 

assuming a background PV which is only a function of height. Then there is a background 
potential vorticity = f f i 2 0 0 / g p ,  where fi is the background Brunt-Vaisala frequency 
which is taken as a function of height only. The only changes to the equations described 
in the previous section are that: f i 2  = N 2 ( z ) ,  = f ,  and GY2 = 0. Therefore the dielectric 
tensor linear part becomes: 

(16) N 2  fo2 
N,2 N,2 

EL: 611 = E22 = -, 633 = - and other components zero 

The non-linear dielectric tensor, E ~ ,  is given by Eq. (13b). 
Compare this dielectric tensor for the Ertel-Rossby PV with that obtained in BT for 

the quasi-geostrophic PV. It is convenient here to take the QG system assuming constant 
density. Using the same coordinates as above the relevant quasi-geostrophic forms are: 
q; = V . Db where Db = EV$’ and the quasi-geostrophic dielectric tensor only has a 
linear part with components given by: 

QG: ell = 122 = 1, E~~ = & and other components zero 
N2 

It is clear by comparing the expressions in Eqs. (16) and (17) for the dielectric constant 
that the quasi-geostrophic PV is not, in general, equal to the linear part of the Ertel-Rossby 
PV. They only become equal in the case when there is no vertical variation in the background 
static stability so that we may define N 2  = N i  and Eqs. (16) and (17) are then identical. 
This difference is highlighted by consideration of the bound PV in the two cases. For the 
QG system polarization only occurs in the vertical direction whereas in the Ertel-Rossby 
case linear polarization only occurs in the horizontal directions. This shows the power of 
the electrostatics analogy in giving a way of visualizing the linear part of the difference 
between Ertel-Rossby and QG PV. The implications of this difference are considered in 
the next section for the problem of a point PV anomaly residing beneath the tropopause; 
the solution in the quasi-geostrophic case having been given in BT. 

(b) The role of the tropopause 
An interesting case arises when there is a point anomaly, Q, of perturbation free- 

charge density beneath the tropopause with a jump in the static stability. To simplify the 
analysis, assume that (2 is of small enough amplitude and is sufficiently distant from the 
tropopause that in the vicinity of the tropopause the effect of the non-linear bound charge 
in the troposphere is zero. 

In order that there be no free charge at the tropopause the vertical component of the 
displacement vector defined in Eq. (Ilb) must be continuous across the tropopause. With I++’ 
continuous across the tropopause, this condition is met when the potential temperature, and 
hence +;, is continuous across the boundary. (Note that the boundary condition imposed 
at the tropopause in the QG case, to give zero e b  at the interface, is different: continuity of 
$I;/ N2.  The QG boundary condition implies an unphysical jump in potential temperature 
at the tropopause. This jump is removed in the Ertel-Rossby case). For a point charge (at 
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z = 0) a distance a below the tropopause (at z = a), these conditions are satisfied if 

(18) 
1 1 n 

+ I = - -  + 
4 n  (x2 + y2 + z W , 2 / f 2 ) ’ / 2  

QU + n)  
4n(x2 + y2 + ( z  - za)2N:/f2)’/2 

(x2 + y z  + ( z  - 2a)2N:/f2)’/2 Q (  

Iy = - 

where n = - l / m  where 1 = (1 - N , / N , )  and m = (1 + N , / N , ) .  The coordinates ( x ,  y ,  z )  
indicate the distance from the point charge. The subscripts are t for troposphere and s for 
stratosphere. 

The solution in Eq. (18) is identical to that for a free charge of QG PV beneath the 
tropopause, given in Eq. (12) of BT, except that here n has the opposite sign. One of the 
important features of Eq. (18) is that it is the solution for an element of free charge at large 
distances from the anomaly due to the rapid diminution of the effects of the non-linear 
terms at large distance. For example for z + 00 the limit is $6 + -Q( l  - Z/m)/4nrS 
whereas in the quasi-geostrophic case discussed in BT the equivalent limit is given by +: --f -Q( l  + Z/m)/4nrs;  where r, = (x2 + y 2  + 

The electrostatics analogy can be used to provide a physical picture of why there is 
a far-field difference between the QG and the Ertel-Rossby solutions for the tropopause 
problem posed in this section. As discussed in BT the bound, or polarized, PVcharge plays a 
crucial role in interpreting the solution. Polarization is governed by the susceptibility tensor, 
E - E ~ .  In the QG system the susceptibility is proportional to ( N t  - f i 2 ) / N 2  whereas for 
the Ertel-Rossby PV the linear part of the susceptibility is proportional to ( f i 2  - N i ) /  N i . *  
Therefore in the QG system, the troposphere is more susceptible to polarization than 
the stratosphere. Thus if a positive free PV anomaly is introduced into the troposphere, 
positive bound charge concentrates at the tropopause. Conversely in the Ertel-Rossby 
system the troposphere is less susceptible to polarization than the stratosphere. Hence 
a positive free charge in the troposphere gives negative bound charge at the tropopause. 
Therefore, as is evident from this comparison between the QG and Ertel-Rossby solutions, 
these differences in the bound charge significantly affect the far-field solution. 

Another important difference between QG and Ertel-Rossby PV is apparent in the 
limit of infinite stability in one of the media. The solution given in Eq. (18) also applies, 
for example, to an anomaly (at z = 0) above the Earth’s surface (at z = -a) if a + -a in 
Eq. (18) and we take the limit N,’ + 00 to mimic the rigid aspect of the surface (in this case 
s stands for subterranean). In this limit = 0 but +; o( 8’ # 0 at the surface for the Ertel- 
Rossby solution. However for the QG solution (Eq. (12) of BT) It/’ # 0 but +; 0: 8’ = 0. 
Attribution, using piecewise potential vorticity inversions, is often done by assuming 8’ = 0 
at the surface. This analysis suggests that + I  = 0 may be an appropriate condition at the 
Earth’s surface for Ertel-Rossby PV anomalies. With this condition, surface pressure falls 
are seen as a consequence of vortex stretching resulting from ascent ahead of an advecting 
PV anomaly rather than being linked per se by PV inversion to that anomaly. 

5. INVERSION SOLUTIONS FOR AN ERTEL-ROSSBY Pv ANOMALY 

In this section the case of a single PV anomaly embedded in a uniform background 
PV with no flow is considered as it provides analytical solutions which make the previous 

* The components of the susceptibility tensor must be positive for like charges to repel and unlike charges to attract 
each other. As the constant N,’ is arbitrary i t  can be chosen differently in the QG and Ertel-Rossby cases to ensure 
a positive susceptibility. 
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- -  
theoretical formulation explicit. For this situation we can take R2 = A$, PV = PVo, and 
p = po as constants. In this case the linear part of the bound charge density e k  = 0 (see 
Eq. (lo)), ebN = -e&, and e;L = ei. Here we exploit an important mathematical simpli- 
fication that arises if the PV anomaly is spherically symmetric in the radial coordinate, 
r ,  defined following Eq. (7). The geostrophic flow assumption will be made by setting 

= ($ ' / fO .  

(a) Quasi-geostrophic case 
The quasi-geostrophic potential vorticity, q', can be expressed, using the radial coor- 

dinate transformation. as: 

This shows that the quasi-geostrophic PV is, in this case, equal to the linear part of 
the Ertel-Rossby PV, e;L. The magnitude of the anomalies are equal if q1 = ek = (PV - 

A simple example of such a PV anomaly is a 'ball' which has a constant but different 
PVO) fo/PVo. 

PV compared to the rest of the atmosphere: 

Such a ball anomaly of PV represents, in some senses, an ideal shaped anomaly in that 
it has equal dimensions in all three directions as long as the normal scaling of the verti- 
cal coordinate ( N /  f )  is made as befits the usual shallow atmosphere approximation. As 
mentioned by Hoskins et al. (1985) the vorticity anomaly is related to the static stability 
anomaly in the following way: 

Hence the vorticity anomaly inside the PV anomaly is of twice the magnitude of the static 
stability anomaly irrespective of the PV magnitude or of the anomaly dimension b. This 
partition will change, however, as the anomaly changes shape. As Hoskins et al. (1985) 
note, as the PV anomaly becomes tall and narrow a greater proportion is partitioned into 
vorticity whereas for a wide and shallow anomaly a greater proportion is in the static 
stability. 

(b) Semi-geostrophic PV 
An alternative estimate of the Ertel-Rossby PV is given by the so-called semi- 

geostrophic potential vorticity, SPV, defined as: 

1 1 
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where 
1 

f;SG =f; + -Jxyz(ut v) f o  
Note that here suffices x, y ,  and z refer to spatial derivatives, winds ( u ,  u )  are geostrophic, 
and J is the three-dimensional vector Jacobian. 

The semi-geostrophic vorticity has additional Jacobian terms which do not appear in 
a simple geostrophic estimation of vorticity, Hoskins (1982). These are formally small in 
situations where the semi-geostrophic approximation is valid. However, following Shutts 
and Cullen (1987), it is possible to make progress whilst retaining the small quadratic terms 
and remaining in Cartesian coordinates. It is possible, as described in the-endix, ~ to 
obtain an expression for the semi-geostrophic free PV charge, s; = (SPV - SPV) fo/SPV, 
using the radial coordinate r :  

Notice that the first term is linear and assumes the mathematical form of the quasi- 
geostrophic PV given in Eq. (19), the second term is quadratic, and the third term is cubic 
in form. 

It can be shown that the solution of Eq. (23) for a localized ball of SPV with s; = s' 
for r c: b and s' = 0 for r > b is given by the following: 

This solution is related to that given by Shutts (1991) for the total flow due to a point 
anomaly. Here though the dependence of the flow on the strength of the PV anomaly is 
given explicitly. The temperature and flow can be found directly from a#'/ar. 

Inside the ball anomaly it is possible to integrate Eq. (24) to obtain the geopotential 
itself - 113 

#'=f,"- P 2  2 (( 1 + -  Jo) -l)+&, f o r r < b  

where 
&,=-fi(/ 00 r ( ( l+--)  s' b3 1J3 -1)dr 

b fo r3 

+b' 2 ((1 + ;>'" - 1) (25) 

Outside the anomaly, r > b, 4' can only be expressed as an integral but for large radii 
we can show that: 
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So, by comparing Eqs. (26) and (20), the semi-geostrophic solution for large radius 
has the same radial dependence as the quasi-geostrophic one. 

In Fig. 1 the semi-geostrophic and quasi-geostrophic solutions are compared when 
si = q' = 4fo. This strong positive anomaly exhibits the important feature that the quasi- 
geostrophic solution has local regions of static instability and so is outside its domain of 
validity. In contrast the semi-geostrophic solution does not exhibit static instability for 
any magnitude anomaly. It can be seen that inside the anomaly the QG solution has much 
larger static stability and vorticity than its semi-geostrophic counterpart. This is associated 
with the fact that the QGPV is additive in terms of vorticity and stability whereas the SPV 
is multiplicative. From Eq. (24) it is clear that the semi-geostrophic solution inside the 
anomaly exhibits exactly the same relationship between the (geostrophic) vorticity and 
static stability anomalies as the quasi-geostrophic case of Eq. (21). The connection of 
these anomalies to the magnitude of the PV itself can also be obtained from Eq. (24): 

An approximation to this relationship in the region outside the PV anomaly can be obtained 
by ignoring the horizontal vorticity components (and those associated with the Jacobian 
term): 

In contrast to the QG solution this latter relationship implies that anticyclonic vorticity 
is limited such that the absolute vorticity is positive. 

(c) Semi-geostrophic dielectric constant 
Using the terminology of section 2 Eq. (23) can be written in the following form: 

.s; = V * D', (27) 

where the vector field associated with a semi-geostrophic PV anomaly written in the 
spherical coordinates is DL = &,(l/fo)(a@'/ar)P where is a unit vector in the radial 
direction. The quantity &,, the semi-geostrophic dielectric constant, is a scalar in these 
coordinates and has the following form obtained by comparing Eqs. (23) and (27): 

It is clear that the SG dielectric constant is not unity even in the case being considered 
here in which the background static stability is uniform. Therefore as shown in section 3 
there is a non-linear contribution to the bound charge. To complete the electrostatics anal- 
ogy for semi-geostrophic theory the equivalent of the electric and polarization fields can 
be defined as follows: 

1 si + sb = V . E', and E: = - - r 
fo a r  
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Figure 1. (a) Vertical section showing potential temperature (contour interval 4 K) and normal velocity (contour 
interval 4 m s-l) for a semi-geostrophic PV anomaly of magnitude :/ fo = 4 with a spherical shape in the stretched 
coordinate. Axes are marked with distances divided by the arbitrary anomaly radius. (b) As in (a) for a quasi- 

geostrophic anomaly of the same magnitude. 

where x, = E ,  - 1 and sb is the semi-geostrophic bound charge. 

using Eq. (24): 
An explicit expression for the SG dielectric constant for the ball charge can be found 

& , = 1 + ~ ( ( ~ + ~ ~ - - 1 )  ( ( l + i J ’ 3 + 2 )  f o r r < b  

& , = 1 + 3  1+-- 1 + - -  + 2  forr > b  (( s” b3)’3-1) (( s’ b3)’3 ) (29) 

fo r3 fo r3 

In Fig. 2(a) the dependence of E, on s” for r < b is given. It is interesting to note that the 
susceptibility, x s ,  has the same sign as the PV anomaly, 1. In Fig. 2(b) the radial dependence 
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of E, is shown for an anomaly with s' = 3 f0 .  Note that E, rapidly approaches unity away 
from the PV anomaly. 

The bound charge density, s;, can be evaluated for the ball solution: 

s; = 3f" ' for r > b 

(I + ;;) 
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Figure 3. (a) Radial variation of the bound charge for an anomaly of strength :/fo = 3.  The bound charge has 
been normalized by the anomaly magnitude. (b) The dependence of bound charge, within the PV anomaly, on the 

anomaly strength. The bound charge has been normalized by fa. 

Hence the sign of sb is independent of the sign of the PV anomaly. Within the ball 
sb is negative. Outside the ball it is positive and at large radii it has a l / r6  variation. Note 
that the dependence of sC, on the radius is consistent with the heuristic argument given at 
the end of section 3. Using Gauss’s integral theorem, it is straightforward to prove that the 
volume integral of the bound charge density, sb, is zero. 

Figure 3 shows the form of the bound charge s6 as a function of radius for a range of 
values of g. In Fig. 3(a) the radial dependence of sb/z is given for an anomaly with $/fo = 3. 
The bound charge is therefore composed of a central negative PV anomaly surrounded by 
an equal amount of positive PV. Figure 3(b) gives the dependence of sb on the anomaly 
strength, s, inside the anomaly where sC, is independent of radius. For the most extreme 
anticyclonic anomaly, s ’ / f ,  = - 1, with zero total PV inside the anomaly the bound charge 
si/fo = -2. In this case the total charge is (s; + sb)/fo = -3.  
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Figure 4. The difference in (a) potential temperature (contour interval 2 K) and (b) normal velocity (contour 
interval 4 rn s-l) between the semi-geostrophic and quasi-geostrophic solutions given in Fig. I .  

Differences between the SG and QG flow and temperature are given in Fig. 4 for the 
case described by Fig. 1. The difference is similar to that due to a negative anomaly located 
within the semi-geostrophic ball as can be seen by the anticyclonic flow and temperature 
dipole. This difference reflects the high concentration of negative bound charge within the 
SG ball. 

As the semi-geostrophic geopotential tends to the quasi-geostrophic form at large 
radii the equivalent QG anomaly is q' = si. It is then clear that the reciprocal of the semi- 
geostrophic dielectric constant gives a measure of the modification to the QG field made 
in using the semi-geostrophic equations. From Fig. 2(b) it is clear that this modification is 
large only close to the anomaly. 

6.  DISCUSSION 

In this paper we have shown that the same electrostatics analogy applies to both the 
Ertel-Rossby potential vorticity and the quasi-geostrophic approximation to potential vor- 
ticity. For a PV anomaly embedded in an arbitrary zonally-averaged flow, with background 
PV varying with latitude and height, the analogy consists of describing the atmosphere in 
terms of a non-linear dielectric medium. The associated dielectric 'constant' is composed 
of a linear and a non-linear part. The linear part is similar but not exactly the same as in 
the quasi-geostrophic case. The difference exists if there is a vertical variation in the back- 
ground PV such as occurs at the tropopause or if the zonal flow is sheared in the horizontal 
or vertical. In contrast close to an Ertel-Rossby PV anomaly the dielectric 'constant' has 
a significant non-linear contribution which produces streamfunction features markedly 
different to that associated with QG anomalies. 

It is apparent that it is the amount of PV-substance per unit volume, pPV, which is 
associated with the size of the induced flow and temperature. Hence a PV anomaly in 
the stratosphere has a much smaller effect than the same magnitude anomaly located in 
the troposphere because of the decrease of density with height. Lower tropospheric PV 
anomalies therefore take on an increased significance as a consequence of these ideas. The 
realization that it is the PV-substance per unit volume that is important in producing field 
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also sheds light on the PV scaling problems, discussed by Lait (1994), associated with the 
observed exponential increase of PV with height. 

The non-linear contribution is interpreted here as being associated with bound charge. 
The conceptual simplicity of an element of total PV charge inducing simple fields, such as 
the geopotential being inversely dependent on distance from the anomaly, is then retained. 
The bound PV charge is then caused by the ‘polarization’ of the medium by the field due 
to the total charge. The non-linear bound charge contribution acts to modify the simple 
field only in the vicinity of the PV anomaly. In the far-field the non-linear bound charge 
contribution is negligible. This is why many of the essential characteristics associated with 
a PV anomaly are unchanged from the QG solution, e.g. a positive anomaly has cyclonic 
circulation with warm air above and cold air below as given in Fig. 1 of BT. 

The linear superposition principle that applies in the quasi-geostrophic case does not 
carry over to the Ertel-Rossby case. However the non-linearity of the dielectric constant 
for PV is significant only in very close proximity to the anomaly. This means that apart 
from anomalies which are extremely close together linear superposition will be a rather 
accurate approximation. Somewhat different flow structures are superposed compared to 
those given by the quasi-geostrophic case so the inversion will be different mainly for this 
reason rather than due to non-linearity. 
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APPENDIX 

Following Shutts and Cullen (1987) one can introduce a new potential function, 
P = 4 + f ; /2 (x2  + y 2 ) ,  which has the property that gSG = l / f i V P x  x VP, .  Then the 
SPV, as defined in Eq. (22), can be written as the determinant of a matrix: 

00 p x x  P x y  px, 
det p y x  PYY PYZ j [ p z x  PZY p,, 

SPV= ___ 
p0g.f; 

Using a decomposition into a background mean state, denoted by an overbar, with 
uniform potential vorticity and a local deviation, denoted by a prime, then 

f,’ P = IS + 4’ where p = 6 + - (x2 + y 2 )  
2 

Taking (b = N,2z2/2 + gz gives spv = (Oo/pgf 3 ) ~ x x ~ y y ~ i z  = 00 foNi/pg ~ _ _  and if the 
anomaly of semi-geostrophic PV is defined as before as s; = (SPV - SPV) f,/SPV then 
the following can be derived: 
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Hence si is the sum of the linear QG term, a quadratic term (that also appears in 
a geostrophic estimate of the PV), and one quadratic and one cubic term specifically 
associated with the SPV. In spherical polar coordinates, using r as defined in section 2, s; 
can be written with some algebraic manipulation as the sum of the three terms given in 
Eq. (23). 

It is interesting to note that the SPV has a spherically symmetric form for a spherical 
PV anomaly field using the radial coordinate. (Note that the component terms are not 
all individually symmetrical. Also the mean state which has been subtracted from the 
geopotential is, apart from constant geopotential and potential temperature factors, also 
spherically symmetric in r ;  i.e. P = 4" + gz + ( f , / 2 ) r 2 . )  It is clear therefore that the 
Jacobian terms for the semi-geostrophic vorticity, although of small magnitude, are suffi- 
cient to make the Ertel-Rossby PV have a symmetric form. 
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