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Poleward heat transport by the atmospheric heat engine 
 
Ref:  Barry, L., G. C. Craig and J. Thuburn (2002), Poleward heat transport by the atmospheric 
heat engine, Nature, 415, 774-777. 

 
Here we summarize Barry et al. (2002) in Nature who apply aspects of both the Carnot 

cycle heat engine concept and diffusion to understand the energy transport by baroclinic eddies, 
what we know as large scale mid-latitude storm systems. 
 
Abstract: 
 Atmospheric heat transport on Earth from the Equator to the poles is largely carried out 
by the mid-latitude storms. However, there is no satisfactory theory to describe this fundamental 
feature of the Earth's climate. Previous studies have characterized the poleward heat transport 
as a diffusion by eddies of specified horizontal length and velocity scales, but there is little 
agreement as to what those scales should be. Here we propose instead to regard the baroclinic 
zone—the zone of strong temperature gradients and active eddies—as a heat engine which 
generates eddy kinetic energy by transporting heat from a warmer to a colder region. This view 
leads to a new velocity scale, which we have tested along with previously proposed length and 
velocity scales, using numerical climate simulations in which the eddy properties have been 
varied by changing forcing and boundary conditions. The experiments show that the eddy 
velocity varies in accordance with the new scale, while the size of the eddies varies with the well-
known Rhines beta-scale. Our results not only give new insight into atmospheric eddy heat 
transport, but also allow simple estimates of the intensities of mid-latitude storms, which have 
hitherto only been possible with expensive general circulation models. 
 

Utilizing the eddy correlation flux concept, one can write the meridional (poleward) transport 
of heat in an atmosphere as the vertical integral of  
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where k is the correlation between the meridional eddy velocity variations, v’, and the eddy 
temperature perturbations, T’.  Note that the correlation, k, is defined as 
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So (1) follows from (2) which defines k.   
Next, assume that the standard deviation of the temperature variations can be set equal to a 

displacement length, Ldisp, in the meridional direction times the mean meridional temperature 
gradient. 
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Then we can use the diffusive flux equation to write 
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where the meridional thermal diffusivity, D, is given as 
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D = Ldisp" v'  (5) 

The authors show that k varies from about 0.2 to 0,35 despite variations in the thermal flux of 2 
orders of magnitude.  So k appears to be approximately constant indicating the validity of the 
diffusive flux representation of the mid-latitude meridional heat flux.  The trick is then to find 
valid expressions for the length and velocity scales, Ldisp and σv, that represent the effective 
baroclinic eddy diffusivity 

Concerning the length scale, the first point is that for a diffusive flux equation to apply, the 
length scale must be smaller than the meridional width of the baroclinic zone.  We’ll come back 
to this. For the length scale, they considered several possibilities. 

1. Radius of deformation 
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where N is the buoyancy or Brunt-Vaisala frequency, H is the depth of the troposphere and f is 
the coriolis parameter = 2 Ω sinφ where Ω is Earth’s rotation rate and φ is the latitude. 

2. Charney model fastest growing mode 
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where Hs is the density scale height, β is the northward gradient of f, θz and θy are the vertical 
and meridional gradients of the potential temperature and  
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Other length scales are associated with cascading energy to larger horizontal scales (This 
cascading from smaller scales to larger scales is essentially a 2D energy cascade. 3D energy 
cascades from larger scales to smaller scales).   
 
3. Energy cascade to the width of the baroclininc zone  The largest scale to which this 
cascade could extend is the meridional width of the baroclinic zone itself, Lzone.   
 

4. Energy cascade to the Rhines β –scale 
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Next come the arguments for the eddy velocity scale in the baroclinic eddy thermal 

diffusivity.  

1. Proportional to the zonal mean flow 
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2. equipartition of potential & kinetic 
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The authors propose another velocity scale derived from heat engine arguments where the heat 
engine extends over just the baroclinic zone rather than the entire atmosphere.  Using the heat 
engine concept, the rate of generation and dissipation of eddy kinetic energy, ε, is given as 
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where q is the rate of energy transport out of the tropics calculated as the net diabatic (radiative 
plus surface flux) cooling per unit mass averaged over the baroclinic zone, δT/T0 is  the 
maximum possible thermodynamic efficiency of the heat engine where δT is the temperature 
difference between the regions where the heat enters and where it is extracted and e is the 
“utilization coefficient” which is the fraction of the kinetic energy used by the heat transporting 
eddies to the total generated kinetic energy.   
 The authors then argue that the velocity scale can only depend on the energy dissipation 
rate per unit mass, ε, and the length scale, Ldisp, which based on the dimensions of these two 
variables (m2/s3 and m) results in 
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Plugging in (12) into (13) and assuming Ldisp α Lβ yields 
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Using (9) yields 

 

! 

" v' # e
$T

T
0

q
2" v '

%

& 

' 
( 

) 

* 
+ 

1/ 2& 

' 
( 
( 

) 

* 
+ 
+ 

1/ 3

  

 

! 

" v'

5 / 2
#e

$T

T
0

q
2

%

& 

' 
( 
) 

* 
+ 

1/ 2

= e
aTy

T
0

q
2

%

& 

' 
( 
) 

* 
+ 

1/ 2

  

where a is the radius of the Earth.  So the velocity scale that results from this baroclinic heat 
engine argument is 
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The resulting baroclinic thermal diffusivity, D, is 
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The heat flux is therefore 
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Various combinations of these length and velocity scales used by various authors are 
summarized in the their Table 1. 

 
 

They compare their length and velocity scales with the scales of baroclinic variability from a 
GCM.  The comparison is in terms of scatter plots and correlation coefficients.  It is quite clear 
that of the possibilities chosen, their length and velocity scales correlate significantly better with 
the GCM scales of variability than the other scales considered.   
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Clearly their new parameterization seems to work quite well in predicting the baroclinic 
meridional heat flux produced by the GCM indicating the heat engine and eddy diffusion 
concepts are applicable here.  Such a relatively simple representation of such an important flux 
term leads to a better understanding of how this flux works and how it will behave as various 
variables are modified for instance in a changing climate. 


