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Clausius Clapeyron Equation 

 

The Clausius Clapeyron equation defines the vapor pressure of a gas that is in 

equilibrium with a liquid or solid of the same material.  The equation is general and in 

atmospheric sciences it usually is used for water.  Equilibrium in this case means the number of 

molecules leaving the liquid (or solid) surface and moving into the vapor state is equal to the 

number of gas molecules striking the liquid surface and condensing from the vapor state to the 

liquid state. 

 

The explanation given below largely follows from Kittel: Thermal Physics (1969). 

 

Chemical potential 

 Chemical potential comes from the concept of two systems in diffusive contact such that 

they can exchange constituents across a permeable boundary.  The chemical potential, μ, of a 

system is defined by 
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where g is the number of accessible states,  is the entropy, N is the number of molecules or 

particles in the system and U is the total energy of the system.  The chemical potential has units 

of energy per molecule.  It tells us how the entropy of a system changes when a molecule is 

added to the system.  

 

 

Phase equilibria 

The thermodynamic conditions for the coexistence of two phases such as a liquid and a 

gas are the conditions for the equilibrium of two systems that are in thermal, diffusive and 

mechanical contact.  These conditions are that  

 Tl = Tg;          μl = μg;          pl = pg.  (3) 

where T is temperature, μ is chemical potential, p is pressure, and the subscripts, l and g stand for 

liquid and gas respectively.  

 

For two gases in equilibrium, the temperature and pressure would be in equilibrium.  Two 

systems that can exchange energy and particles are in equilibrium when the temperatures, 

pressures and the chemical potentials are equal.  From the equality of the chemical potential of 

the gas and liquid phases, we have 

 μg p0,T0( ) = μl p0,T0( ) (4) 

and 

 μg p0 + dp,T0 + dT( ) = μl p0 + dp,T0 + dT( ) (5) 

From the second equation we can say that  
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where the … refers to higher order terms.  We subtract off (#) and keep the first order terms to 

get 
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We gather the dp and dT terms 
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which is the differential equation of the vapor pressure equilibrium curve.   

We will now use the Gibbs free energy, G, to determine these partial derivatives.  The 

Gibbs free energy is defined as 

 G U TS + pV  (10) 

The derivative of G is 

 dG dU TdS SdT + pdV +Vdp  (11) 

The thermodynamic identity on conservation of energy that we have used previously generalized 

to include the energy associated with adding molecules to the system is 

 dQ = TdS = dU μdN + pdV  (12) 

Substituting this into the derivative of G yields 

 dG dU dU + μdN pdV SdT + pdV +Vdp = μdN SdT +Vdp (13) 

but the derivative of G is composed of the sum of the partial derivatives 
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By comparing the last 2 equations we see that 
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Now to relate G and μ, we note that G increases linearly with N, which is the number of 

molecules in the system. T and p do not change when two identical systems are put together but 

G doubles when two identical systems are put together because G is proportional to N.  So  
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 G = N F(T,p)  (16) 

where F is a function of T and p and not N. So  
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Therefore, F = μ and G is related to the chemical potential, μ, via 

 G = N μ(p,T) (18) 

where N is the number of molecules in the system.  

 The two terms in the numerator are found using the thermodynamic relation, 
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where S is the entropy of the system.  Since N, the number of molecules in the system does not 

depend on temperature, we can write as follows 
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where s is the entropy per molecule. 

The two terms in the denominator are found using the thermodynamic relation, 
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where V is the volume occupied by the N molecules.  Again, because the number of molecules in 

the system does not depend on pressure, we can write  
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where v is the volume per molecule.  

Combining (20) and (22) with (9), we get 
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Note that sg-sl is the increase in entropy of the system when we transfer one molecule from the 

liquid to the gas phase. vg-vl is the increase in the volume of the system when we transfer one 

molecule from the liquid to the gas phase. 

 We know that the internal heat conversion in moving a molecule from the liquid state to 

the vapor state is Lm which is the latent heat per molecule. The change in entropy is the change in 

energy divided by temperature such that  

 sg sl( ) =
Q

T
=
L

T
 (24) 

 

Clausius Clapeyron equation 

 We combine these to get the change in the equilibrium vapor pressure with temperature 

as 
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The next step is to recognize that the volume taken up by the molecule in the gas phase is much 

larger than the volume taken up by the molecule in the liquid phase. 

 v vg =
Vg

Ng

 (26) 

We can then use the microscopic form of the ideal gas law, P V = N kB T to get  
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V

N
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which we substitute in to get 
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Converting this to the macroscopic version 
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where Lv is the latent heat of vaporization in J/kg and Rv is the gas constant for water in J/kg/K.  

This is the form of the Clausius Clapeyron we usually see and use. 

 


