A dynamical picture of the oceanic tides
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A detailed treatment of tide-generating forces is given, followed by a simplified dynamic theory of
tidal waves. To clarify the underlying physics, we use a simple model of the ocean that consists of
a water shell of uniform depth completely covering the globe. The treatment is appropriate for
college and university undergraduate students studying introductory geophysics or astronomy,
general physics, or intermediate mechanics. A computer simulation is developed to aid in
understanding the properties of sun- or moon-induced tide-generating forces and of the stationary
tidal waves created by these forces in the open ocear0d® American Association of Physics Teachers.
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[. INTRODUCTION forces at an arbitrary point on the earth. Next the si@iiyii-
librium) distortion of the ocean surface under these forces is
All textbooks in introductory astronomy and many in determined. Then we show that the same expressions for the
physics and intermediate mechanics mention the existence @tial forces are applicable on the rotating earth, and we dis-
oceanic tides as an interesting manifestation of universatuss how these forces depend on time. We show that a uni-
gravitation. Pedagogical papers devoted to the tides, for  form rotation of the system of tidal forces coupled with the
example, Refs. 193estify to the fact that many teachers are apparent motion of the sufmoon can be represented as a
interested in this topic, but are not satisfied with the claritysuperposition of two oscillating quadrupole systems of forces
and correctness of the commonly accepted explanations @fhose axes make an angle of 45° with respect to one an-
the physics of tidal phenomena. A review of textbooks anchther. Each of these systems of forces generates a steady-
related literature shows that the most important aspects of thgate forced oscillation of the oceém standing wave Next
origin and properties of tides are often treated inaccurately ofe treat the tidal wave circulating around the globe as a
even erroneously. Much of the confusion over generatinguperposition of these standing waves. Finally the real-world
tides is related to the roles of the orbital motion of the mooncomplications of this simplified picture are discussed briefly,
and earth about their common center of mass and of thgs well as the role of tidal friction in the evolution of the
earth’s axial rotation. In discussing the physics behind thisaxial rotations and orbital revolutions of celestial bodies.
phenomenon, authors usually explé&more or less success-
fully) why two tidal swells appear on the opposite sides of
the globe. However, it is difficult to find a plausible expla-
nation of the physical mechanism responsible for the phasg. THE TIDE-GENERATING FORCES: AN
shift between the zenith of the moon and the moment of highel EMENTARY APPROACH
tide, which at some places approaches 90°. Misunderstand-
ings also occur in discussions about the role of tidal friction The tides are manifested by alternating vertical displace-
in the retardation of axial rotations and in the evolution ofments of the surface of the sea coupled with horizontal
orbital motions of the gravitationally coupled celestial bod-movements of the water that are called tiual currents It
ies. is well known that the tides are caused by the varying gravi-
To clarify the basic physics underlying the tidal phenom-tational forces that the moon and sun exert on both the earth
ena, we suggest a rather simple but rigorous treatment of thend its oceans. More exactly, the origin of tidal phenomena is
tide-generating forces, followed by a theory of the circulat-related to the inhomogeneitynonuniformity) of the lunar
ing tidal wave produced by these forces. This treatment useand solar gravitational fields across the globe.
a simplified model of the ocean consisting of a water shell of The gravitational force the moon exerts on any body on
uniform depth entirely covering the globe. A computer simu-the surface of the earth is much smaller than the gravitational
lation is developed to support the analytical treatnt8ifthe  force of the sun. However, because the moon is much closer
simulation gives a dynamical picture of the forces and theo the earth than the sun, the inhomogeneity of the lunar
tidal wave driven by these forces in the open ocean. Thigravitational field across the earth is considerably greater
paper and the simulation are intended only to clarify thethan that of the solar field. As a result, moon-induced tides
physical background of this natural phenomenon and do naire more than twice as great as sun-induced tides. Neverthe-
assume to describe the complete picture. The purely theoreless, to arrive more easily at an understanding of the physical
ical quantitative description of tides for a given location onorigin of tide-generating forces, we begin our analysis with
the earth, derived solely from first principles, is hardly pos-sun-induced tides. These are somewhat simpler to explain
sible because of the extremely complex structure of thédecause the center of mass of the sun—earth system very
oceans, the actual system that responds with tides and tidakarly coincides with the center of the sun.
currents to the well-known tide-generating forces. We next divide the problem into two parts: First we dis-
The paper is organized as follows. First we discuss qualieuss the origin and properties of tide-generating forces, after
tatively the physical nature of the sun- and moon-inducedvhich we investigate qualitatively the much more compli-
tide-generating forces in a nonrotating geocentric frame otated case of the dynamical effect that these time-varying
reference, deriving the mathematical expressions for thes®rces have on the ocean. We note that much of the confu-
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sion in the literature is related to the fifsather simple part
of this problem, which can be completely and unambigu-
ously solved using Newtonian mechanics.

The earth as a whole moves with an acceleration relative
to an inertial reference frame. This acceleration is produced
by the gravitational attraction of the earth to the gand
also to the moon and to all other celestial bogiédthough
the earth_ trave_ls m_an aImOSt C”jCUIar orbit, its Cenmp(_:‘t"’llFig. 1. Sun-induced tide-generating forces at different poktsB, Z,
accelerationay in this orbital motion is generated by the gngn.
gravitational pull of the sun and hence is just teelera-
tion of free fall which is independent of the orbital velocity.

The earth would move with the same acceleration were iarising from the noninertial character of the reference frame,
freely falling in the gravitational field of the sun. What is we can use instead an inertial frame, in which the tidal force
important in this problem is the acceleration, not the orbitalcan be found by the vector subtraction of the gravitational
velocity, of the earth. force of the sun on the body at its given location with the

To better understand the tides, we first useoarotating  force of the sun on the body were it located at the center of
geocentric reference frame. Although the origin of this framethe earth. Indeed, when viewing the situation on the earth
moves approximately in a circle around the qumore ex- from the inertial frame of reference, we can apply the Gal-
actly, around the center of mass of the sun—earth systam  ilean law according to which, in the same gravitational field

frame itself does not rotate because the directions of its axegere the field of the supall free bodies experience equal
are fixed relative to the distant stars. That is, the motion ofccelerations. Hence the earth as a whole and all free bodies

this frame—revolution without rotation—is a translational On the earth, being subjected to almost the same solar gravi-
(though nearly circularmotion. It reminds us of “the circu- tational field, are very nearly accelerated toward the sun.
lar motion of the frying pan” in the hands of a co¢see Ref. Consequently we do not particularly notice the influence of
1). With respect to inertial space, all points of this referencesolar gravitation on what happens on earth. The small differ-
frame move with an acceleraticm whose magnitude and ©€Nces between the acceleration of the earth as a whole and of
direction are the same for all the points. Any body of nass the earthly bodies depend on the distances of the bodies from
whose motion is referred to this noninertial geocentric fram the center of the earth because these differences are caused

(for example, an earth satellite, or a drop of water in th:Dy the nonuniformity of the solar gravitational field over the

‘< subiect to th dof f inerti. = — extent of the earth!
ocean is subject to the pseudoforce of inertig, = —may, These differential effects of gravity give rise, in particular,

which is independent of the position of the body relative 0y, so|ar gravitational perturbations of an earth satellite’s geo-
the earth. If the body were placed at the center of the earthyanyic orbit. The tide-generating forces slightly distort the
this pseudoforce would exactly balance the gravitational atparth's gravitational pull that governs the satellite’s motion
traction of the body to the sun. In other words, if we considers, that after a revolution, the satellite does not return to the
the earth as a giant spaceship orbiting the sun, a body place@me point of the geocentric reference frame. On the surface
at the center of this ship would seem to be weightless withyt the earth, these same forces give rise to the tides. We
respect to the gravitation of the sun, just as astronauts on afnphasize that tidal forces are caused not by the sun’s gravi-
orbital station seem to be weightless in the gravitational fieldational field itself, but rather by the nonuniformity of this
of the earth. field.

The force of inertiaf,= —may, experienced by a body  Figure 1 illustrates the origin and properties of the tide-
in the freely falling geocentric frame of referen@@ in the  generating forces produced by the sun. The free-fall accel-
frame that revolves without axial rotation about the sun—eration of the eartk in the gravitational field of the susi is
earth center of magshas the same magnitude and direCtiO”aozGMsun/Rz, whereMg,,is the mass of the sun, amlis

everywhere on the earth. On the other hand, the gravitationg},e s n—_earth distance. The gravitational pull of the Byp

pull of the sun,Fg,, experienced by the body diminishes xperienced by the bodgor example, a satellijeat pointA
with its distance from the sun and is directed to the sun, an Imost equals the force of inerti, in magnitude because
N

hence both the magnitude and directiorFgf,depend on the -y, istances to the sun from the body and from the center of
position of the body on the earth. Because the earth is e earth are very nearly equal. However, at pdnthe
e)étr?ggﬁd bggy, ;Teaﬁgeggtc’fgrii'ﬂan: tr:;.tfgrceeFéLén ?r:t thdirection of the gravitational forcEg,, is not exactly oppo-

9 y unequ xactlly Opposite, excep ite to the force of inertid;,. Thus their nonzero resultant,

center of the earth. The combined actions of the gravitation . X S
pull of the sun and the pseudoforce of inertia is thial at e tidal forceF, at pointA, is directed toward the earth. Its

force magnitude equalsa,B=may(r/R)=(GmMg,/R?)(r/R),

In other words, the tidal force at a given position near thevhere=r/R is the angle between the body and the center
earth equals the vector difference of the gravitational pull thedf the earth as seen from the sun. The tidal fofgeat the
sun exerts on an object at this position and the gravitationadpposite poinB equalsF, in magnitude and is also directed
pull the sun would exert on this object were it at the center ofvertically downward to the earth. On the surface of the earth,
the earth. We may avoid using a noninertial reference framé¢he tidal force is directed vertically downward at all places
if we are not inclined to introduce the concept of the pseudo{forming a circle where the sun is in the horizon at that
force of inertia to students. In doing so, we can use a somgnoment.
what different language in the subsequent derivation of the The distance from the sun to the body at paiht(for
tidal force: Instead of discussing the vector addition of thewhich the sun is at the zenitis smaller than to the center of
pull of the sun and the corresponding pseudoforce of inertidzhe earth. Here the gravitational pull of the sun points exactly
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the vector sum of its gravitational attraction to the skg,,
=—GmMsu,{S/r§, and the force of inertiaf;,=—mag
=GmM,R/R3:

_ _ rs R
Ftid_ I:sun+ Fin_ -Gm Msu r_3 - @ . (2)
s

Fig. 2. For calculation of the tide-generating force at arbitrary pbDint )
We express in Eq. (2) as the vector surR+r and calcu-

late the square of,. We take into account that<R and
opposite to and is somewhat greater than the force of inertid’ rite

Hence, the tidal forcé, at this point is directed vertically ) . . (Rr)
upward, from the earth toward the sun. Its magnitude, rs=(REN=RH2(RN)+r"~R% 1+2—4 ) (©)
mMgun R? _ . .
Fz=Gﬁ—ma0:maO ﬁ_l To find an approximate expression ford/in Eq. (2), we
(R=r) (R=1) raise the right-hand part of E3) to the power ¢ 3/2). If
2r M Mg, 21 we substitute the resulting value of j/into Eq.(2) for Fyq,
~ma =Gz &7 @  we obtain:
is approximately twice the magnitude of the tidal forces at _ MMgyn 3(R-r)
pointsA andB. Similarly, at the opposite poird (for which Fige~—G R3 (R+r)|1- R -R
the sun is at its nadirthe force of inertia is greater than the
gravitational pull of the sun, and so the tidal fofggat point ~_gm Msin| . (RT) @
N is also directed vertically upward from the eafémd from R® R?

the sun. In magnitude Fy, approximately equalf; .

The expressions for the tidal forceB,=(GmMg,/R?) We note that the main contributions Bf,,andF;, to Fyq,

: . . whose magnitudes are inversely proportionaRto cancel in
f><(r/R) anéj Fz gwenﬂ?y Eq;[(hl)t; atrre]: valid al§fo for thfatldal Eq. (4). This cancellation corresponds to the aforementioned
orces produced on the earth by the moon It We Tepldse,  state of weightlessness that we experience on the spaceship

b}’] the mass of the n:jc_)fcf)n arﬁdb;k/) the moorp\—earth_ d(;stanoclze. garth with respect to the sun’s gravity. For poiAtendB in
There is no intrinsic difference between the sun-induced ang;, 1 ' js perpendicular td&?, and hence the scalar product

moon-induced tide-generating forces. In both cases, the °”|éh-r) is zero. Therefore at these points the tidal force is

o . . NYirected opposite to (that is, vertically downwaryg and its
gravitational pull of the celestial body that causes the tide bp ( ’ y d

- 3 .
on the earth, not the orbital velocities of both gravitationally . agnitude equalS mMg,{r/R°). For pointsZ andN, the

. dal force is directed along (that is, vertically upwarg and
fr%JgrL)ed bodiegthe earth and the sun, or the earth and thelts magnitude BZmM,,{r/R®) is two times greater than at

The tidal force experienced by any object is proportionalPCiNiSA andB. We see that at these four points, the general
to its distancer from the center of the earth and inversely "€Sult given by Eq(4) agrees with the simpler calculations

proportional to the cube of the distan&eto the celestial of Sec. I

body that causes the force, and is proportional to the mass of

the source body. As noted, lunar tide-generating forces on the

earth are more than twice those of the dtmeir ratio is v HORIZONTAL AND VERTICAL COMPONENTS
approximately 2.pbecause the moon is much closer to theor THE TIDAL FORCE

earth.

The sun-induced tide-generating forces exerted on the
earth have a quadrupole character: They stretch the earth
lll. TIDAL FORCES AT AN ARBITRARY POINT along the sun—earth line, and squeeze the earth in the direc-
NEAR THE EARTH tions perpendicular to that line. Because of the axial symme-
o ) _try with respect to the sun—earth line, the vertical and hori-
generating potentialsee, for example, Refs. 12 and)¥8r  gngle g shown in Fig. 2(and on the distance from the
which the mathematics is somewhat simpler. However, (Qenter of the earth The angled determines the position of

emphasize the physics underlying the origin of tide-yho nass noinm on or near the surface of the earth mea-
generating forces, we consider the vector addition of the reléured from this line

evant forces, just as in the elementary treatment of Sec. Il. To Figure 3 shows how the tidal forces are directed at differ-

obtain a general mathemahcal expression for th_e tIOIeén'f points near the earth. Because of axial symmetry about
generating force at an a_rb|trary poibt over th_e eartiFig.  he sun—earth line, Fig. 3 applies to any plane passing
2), we introduce the radius vectorof this point measured through the sun—earth line.

from the center of the earth, and also the vestorR+r The horizontal(tangential to the surfagecomponents of
measured from the center of the s@whereR is the vector  the tidal forces are much more influential on the ocean tides
of the center of the earth from the center of the sun. and on the orbits of earth satellites than are the vertieal

The tidal forceFy experienced by a body of mass at  dial) components, which only modify slightly the earth’s
point D in the noninertial, nonrotating geocentric frame is gravitational force. For the horizontal component of the tidal
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from the earth’s center are equal in magnitude and differ only
in direction.

Equations(5)—(7) also are valid for the tidal forces pro-
duced by the moon, provided we replace the mass of the sun
Mgun by the mass of the mooM .., and the sun—earth
distanceR by the moon—earth distance. In this case the angle
¢ in Eq. (7) determines the position of the body relative to

Fig. 3. Directions of the tidal forces at different equatorial points near thethe moon__earth I'ne'_
earth. The tide-generating force of the moonFq,

=(3/2)GMMy00f o/ R3, experienced by a body of mass m
on the surface of the eartln is the earth’s radiysis very
) ) ) ~_ small compared to its weight—the earth’s force of gravity
force a_t an arbitrary poinb, w.hose geocent.rlc position is Fgrav:mg:GmMearth/r%- If we let the ratioM oon/M ear
determ|_ned_ by the two c_;oordmatesand 0 (in the plane =1/81 and the mean earth—moon distaRee60r , (actually
shown in Fig. 2, Eq. (4) yields: this distance varies betweenrg7and 63.7, because of the

MMgyn elliptical shape of the moon’s orbjtwe obtain
(Fid)hor= —3G——=3—r cosésind 3 g
R FtidaI/Fgrav:(3/2)(Mmoon/Mearth)(r0/R) ~8.6xX10°.
r 3 r (8)
=— 3Fsun§ cos@sinf=— EFsunﬁ sin26, (5) Although the maximal lunar tidal force on the surface of

the earth is only about 1T of the earth’s gravitational force,

whereF¢,=GmM,/R? is the gravitational pull of the sun its effect on the ocean water can be considerable because of

on the body. The horizontal component of the tidal force isits horizontal component, which is orthogonal to the earth’s

zero at pointsA and B and at all other points of the plane gravitational field and varies with time periodically because

orthogonal to the line sun—eartfor which 6=90°), as well ~ Of the earth’s axial rotation. The horizontal component shifts

as at pointsN and Z (for which §=0° and #=180°). The  the ocean water around the globe.

horizontal component of the tidal force has its maximum

value (3/2)¢/R)Fqui=(3/2) (r/R)GmMy,/R? at all points v, THE STATIC DISTORTION OF THE WATER

on the earth for which=45° and§=135°. This maximal gyURFACE

horizontal component of the solar tide-generating force

causes a deviation of the plumb line from the direction of the To estimate the stati¢equilibrium) distortion of the

earth’s own gravity only by 0.008 ocean’s surface due to the tidal forces, we can use the hypo-
If we take the scalar product of the right-hand side of Eq.thetical situation of a nonrotating planet on which the tide-

(4) for Fyy with the unit vectorr/r, we obtain the depen- generating forces are nearly time-independent. From the

dence of the vertical componerf ;) . of the tidal force on ~ Symmetry of tidal forces, Ec(7), we can assume that the
the angled betweenR andr: distorted surface has an ellipsoidal shape given by

r(@)=ry+acos 2, 9

where 2a<r, is the difference in the static maximal and
minimal levels at point¥ andA (see Fig. 3 Hence we can

mM
(Fiig)ver=G ?sunr(s cog 6— 1)

3 MMgyn 1 1 write for the small inclinationa of the water surface with
=-G—57r 5 +3]. h
2GRz R|COSFT3 ©® respect to the horizon:
The last term on the right-hand side of Ef) is indepen- 1dr(0) 2a
dent of ¢ and is thus independent of time on the spinning &= " —g5~ =~ SN 20. (10

earth. It can therefore be dropped as far as the tides are

concerned. This term in the vertical component of the tidaMWe see that the water surface is horizontaH0) at =0
force is the same everywhere on the edftin a given value and §=90° (pointsZ andA). The anglea is maximum and

of r) and adds only a tiny constant value to the vertical forceequals 2/ro at 6=45° and at6=135°, where the tidal
of the earth’s gravity(about ten million times smaller than force is directed horizontally. In equilibrium the distorted
mg). Thus, the vertical and horizontal components of thewater surface is orthogonal to the plumb line. The plumb line
tidal force exerted on a body of masslocated at a position shows the direction of the vector sum of the earth’s gravity

determined by angl® and radiug are given by: and the tidal force. A small departure of the plumb line from
the direction of the earth’s gravity is caused by the horizontal
Fuen= (3/2)(r/R)Fgyncos 26, component of the tidal force. Therefore, the anglequals
Fhor= —(3/2)(r/R)Fg,,sin 26, (7)  the ratio of the horizontal tidal forcEy,, to the force of the

earth’s gravity Fg,,=mg. If we equatea=2alry, at ¢
whereF,, is the total gravitational pull of the sun experi- =45° to Fy,/Fg,, and take into account that for sun-
enced by the body anywhere on the earth. This representatiQiduced tides, Fp,,/mg=(3/2)(M sun/Meartf)(rg/Rs)v we

of the tide-generating force is especially convenient becausgng for the maximal static level differencea2at pointsZ
Eq. (7) defines a tidal force vector whose magnitude (3/2) 5,4 A-

X(r/R)Fg¢,= (3/2)GmM,/R® is independent of the angle 3
6: The tidal forces at all points that lie at a given distance 2a=(3/2)1o(Msun/ Meartn) (1o/R?). (11

1004 Am. J. Phys., Vol. 70, No. 10, October 2002 Eugene I. Butikov 1004



Equation (11) yields 2a=0.24 m. A similar expression is oceanic waters on the spinning earth to these time-dependent
valid for the static distortion of the ocean surface due to thdorces is the essence of the phenomenon of tides.
lunar tidal force, and yields &=0.54 m for the moon- Thus, in the problem of tides, expressions for the tide-
induced static distortion. In Sec. VII the equation for this generating forces,, andF . in Eq. (7) are applicable also
static distortion is also derived from the tide-generating po+o the true geocentric frame of reference, which takes part in
tential. the daily axial rotation of the earth. The system of tidal
forces shown in Fig. 3, being coupled to the apparent posi-
VI. TIDAL FORCES ON THE ROTATING EARTH tion of the sun(moon), rotates ri_gidly_ _together with the
earth—sun(earth—mooh line. For simplicity, we shall con-

In the above we have used a revolving but nonrotatingsider the case in which the source celestial b@tg sun or
geocentric reference frame. The origin of this frame movegnoon occurs in the equatorial plane of the earth. Although
in a circle around the sun—earimoon—earth center of the system of tidal forces rotates as a whole with the angular
mass, but the frame itself does not rotate because the diregelocity () of the earth’s axial rotation, that is, with a period
tions of its axes are fixed relative to the distant stars. That is9f 277/}, the true period of variation of the tidal forces on the
the frame moves translationally in a circle. This referenceearth equals half this valuél' & 7/Q)) because of the quad-
frame is convenient for the analysis of a motion of an artifi-rupole symmetry of the system of forcéthe semidiurnal
cial satellite. If we ignore the perturbations caused by tidakide). For the sun-induced tidal forces the period equals 12 h.
forces, the earth satellite traces out a closed elliptical orbifor the moon-induced tidal forces the period is 12 h 25
relative to this reference frame. min—the difference between the periods is due to the orbital

To introduce tidal forces on the rotating earth, we must usenotion of the moon. If we fix a point on the equator of the
a true geocentric frame of reference that takes part in thearth, the local tidal force vector executes a uniform rotation
daily rotation of the earth. This frame is noninertial, andin the vertical plane, making two complete revolutions dur-
hence we should be concerned with the acceleration of it&yg a day. The simulation clearly shows how the daily rota-
different points. We can consider the motion of the eéatid  tion of the whole system of tidal forces produces this doubly
of the geocentric reference fraings consisting of two com- fast uniform rotation of the tidal force at a given equatorial
ponents. The first is the component considered abovegoint, as seen by an observer on the spinning €drBe-
namely translational motiorirevolution without rotation  cause of this periodic dependence on time, the tidal forces, in
about the sun—earttmoon—earth center of mass. The sec- spite of their small magnitude compared even to the centrifu-
ond component is a uniform daily rotatigspin of the earth  gal force of inertia, produce the oceanic tides.
about an axis passing through the center of the earth. To find analytical expressions for the time dependence of

Both these motions of the earth are important in the probthe tidal forces at a given point in the equatorial plane of the
lem of tides, but the roles they play are quite different. Thespinning earth, we substitute=Qt in Eq. (7). This substi-
acceleratiorg, related to the translational motion is respon- tution yields the following expressions for the point of the
sible for the origin of the uniform pseudoforce of inertia equator at which the sun culminatgssses through its ze-
Fin=—may, whose action on a body on the earth, combinedhith) att=0:
with the nonuniform gravitational pull of the symoon), is
described by the tidal forcE,y considered previously. We Frer(t)=Ar cos 201,
note ag_ailj that only the accelgratie@ of'this translational Frodt) = — Ar sin 201, (12
motion is important, not the orbital velocity of the eatfilo
avoid confusion often encountered in the literat(see, for ~ where A=(3/2)F,/R=(3/2) GmM,/R®. At any other
example, Ref. 15 we must be careful with definitions. In equatorial point of the earth, the tidal force vector also ro-
discussing tides, we should be concerned only with thoseates in the vertical plane with angular velocit 2That is,
gravitational and inertial forces that depend on the apparerdll the vectors at different points rotate synchronously but
position of the celestial body that produces the tide. Thewith different phases.
axial rotation of the earth is related to the centripetal accel-
eration and gives rise to centrifugal forces that increase in
proportion to the distance from the earth’s axis. The centrifu-
gal force of the earth’s daily rotation generally is much VIl. THE POTENTIAL FUNCTION FOR TIDAL
greater in magnitude than tidal forces. Because of the celFORCES
trifugal forces, the equilibrium shape of the earth differs
slightly from an ideal sphere—it is approximately an ellip- ~An approach often used in deriving an expression for the
soid of rotation whose equatorial diameter is a bit greatetidal force is to begin with the potential energy of a body
than the polar diametésee, for example, Ref. 13The cen-  under the influence of tide-generating forces. This approach
trifugal effect of the earth’s daily rotation causes an equatois simpler than that presented above. However, we have cho-
rial bulge, which is the principal departure of the earth fromsen the above approach because it does not obscure the un-
its spherical shap¥. derlying physics and consequently may be considered advan-

But we are not concerned here with this constant distortioidgeous to  physics instructors. Nevertheless, for
of the earth because this distortion is independent of the agfompleteness, we introduce here the potential function,
parent position of the celestial body that produces the tidedJiged,#), and show how it can be used in calculating the
Therefore, the centripetal acceleration of the axial rotatiorequilibrium shape of the surface of the ocean and the static
adds nothing to tidal forces. However, the daily rotation ofdistortion of the water under tidal forces.
the earth makes tidal forces time-dependent because the pat-The components of the force that lie in the equatorial
tern of tidal forces on the earth is coupled to the apparenplane are given in Eq(7) and are the negative gradients of
positions of the sun and moon. A dynamical response of théhe potential functiorge{r, 6):
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Fuen=Ar €0S 20= — dU qed I, 0)/3r , minations of the moorisun), that is, when the moofsun
(13) passes through its zenith and nadir. Observations do not

Fhor=—Ar sin 26=—(1/r)dUsqed T, 0)/96. agree with this prediction. Instead, almost the opposite is
Therefore, the potential function for the tidal forces can beusually observed: the moments of low tide occur approxi-
written as: mately at the culminations of the moon.

B ’ A complete theory of the tides should take into account the
Utiged T, 0) = — (1/2)Ar* cos 20 dynamical response of the ocean to the time-dependent gen-
= — (3/4)(GMMg,/R®)r? cos 26. (14)  erating forces. The dynamical theory of tidéisst suggested
) o . . . by Laplace and developed by Ajntreats the tides as a
The restoring forces that limit the tidal distortion of the steaqy-state forced motiojunder varying tidal forcesof a
water’s surface are due to the earth’s gravity. If the eamHynamical systerithe ocean!’” Such a theory predicts a
were not rotating relative to the earth—sun line, the staliGegonant growth of the steady-state amplitude in cases when

distortion of the water surface covering the globe would b&e qriving period approaches the period of natural oscilla-
the surface of equal total potential: tions

U(r,8)=Ug(r)+ Uyged T, 8) =const, (15 To avoid the complications related to the three-
dimensional character of the problem and to explain the
physical aspect of the dynamical theory using the simplest

possible model, we imagine, following Airy, water in a wide
canal of uniform depth engirdling the entire earth along the
equator. Imagine the water surface in this canal being dis-
U(r,0)=mgr—(1/2)Ar? cos 26. (16)  torted statically under the tide-generating forces so that two
. ) ) bulges form on opposites sides of the earth, changing the

In particular, at point<Z andA (see Fig. 3 of the water  ghane of the surface from circular to elliptical. If the forces
surface, the values of the total potential function, BXf),  majintaining this shape suddenly vanish, the earth’s gravity
are equalU(rz,m)=U(ra,m/2), from whence we obtain  \oyld make the distorted surface restore its equilibrium, cir-

where Ug(r)=mgr is the spherically symmetric potential
function of the earth’s gravity which yields the radial com-
ponent of the earth’s gravitational force-dUg(r)/dr
=-—mg. Thus,

mgrz—(1/2)Ar2=mgrA+(1/2)Ar2, cular shape. The water would start to flow and the bulges
‘ A 17 disappear so that after a time, namely a quarter period, the
mg(rz—rA):(1/2)A(ri+ r%). water surface would become circular. But because the water

We can use this condition to determine the static equiIibriumcggt'ng:rsiéongquveasﬁ{toﬂsznhcgcv?r: q;r?rgﬁ? ggg;)gist?;tigﬁl%?s
distortion under the tidal forces of the otherwise spherica PP P : gc¢ P i
e surface along the line perpendicular to the line of the

ocean surface. Let the radii of the distorted water surface at . . ) : g . .
original distortion. Then the motion repeats itself in reverse.

points Z gndA berz=r0+a ano! fa=lo—a, respectlvgly, This motion of water in the circular canal is a gravitational
wherer is the radius of the undistorted surface. Theni® standing surface wave whose wavelength equals half-
the static Ieyel d|fference. at points andA_ in which the circumference of the globe. Such a mode of oscillation is
level is maximum and minimum, respectively. Thus, from characterized by a certain natural period

— 2 2\ 2 et .

Eq.(17) we have Inga=(1/2)A(rz+r,)~Arg, and for 2 The superposition of two such standing waves whose
we obtain: phases differ byr/2 and whose elliptical axes are separated
2a=Arg/(2mg) = (311 o(Fsun/MQ)(ro/R). (18) by 45° produces a circulatingraveling wave of constant

2102 elliptical shape and a wavelength equal to half of the earth’s
We note thatFg,/mg=(Msu/Meard (1g/R?), S0 that the  ¢ircumference. The two opposite bulges in the water surface
static distortion of the ocean surface under the sun-induceglayel with this wave around the globe preserving their
tidal forces can also be expressed as: height and shap¥.
2a=(3/2)1 o(M g/ M gare) (r 3/ R3).. (19) An essential point in explaining the steady-state phase
) o ) N shift between the moments of high tide and the culmination
This expression is the same as EIjl) derived by requiring  of the moon(sun is the relation between the natural period
that in equilibrium the surface of the ocean be orthogonal te|—0 of this circulating wave and the perigdl of the tide-

the vector sum of the earth’s gravitational force and the tidabenerating driving forces. It is possible to estimaeas the

force. time taken by the circulating surface wave to travel along
half the globe. In the limiting case of very long waves on the

VIIl. THE NATURAL WAVE AND THE DRIVING surface of shallow waten\&h) the speed of wave is deter-

TIDAL FORCES mined by the earth’s gravity and depthth, and is indepen-

o ) dent of . From hydrodynamics we know that this speed
Most authors oversimplify the problem of tides and CON-equals Gh)Y2 (see, for example, Ref. 18, p. 403Ne as-
sider (after Newton and Bernoullionly the so-calledstatic sume that the mez;\n valtre of thé ocean aepth is 3.5 km

(or equilibrium) theory of tides, which treats the ocean sur-_ . : .

face as a liquid ellipsoid stretchealong the earth—moon During a periodT,, the wave travels half me circumference
(earth—sun line, as if this surface were always in equilib- Of the globemr,, and hencelo=r,/(gh)**~30 h. Thus,
rium under the earth’s force of gravity and tidal forces pro-the approximately 12-h driving external peridds less than
duced by the mooitsun. In this approach, the tidal bulges the natural period’, of the free oscillation.

are aligned with the earth—modar earth—supaxis. There- We emphasize that it is the shape of the surfdlce wave

fore on the spinning earth the moments of high water at dhat circulates around the glob®ot the water itselfRelative
given location should coincide with the upper and lower cul-to the earth, points on the surface of the ocean execute os-
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cillatory motions in closed paths that are considerablyin phasewith the driving force, provided the driving period
stretched horizontally. On the average, the water is stationang longer than the natural period. Otherwise the forced mo-
in the geocentric frame. tion occurs in theopposite phasavith respect to the driving

To obtain the dynamical picture of tides on the rotatingforce. For the simplified model of tides in the equatorial
earth, we should use the reference frame that rotates with tteanal of uniform deptliand also for an earth covered every-
earth. Relative to this frame, the quadrupole system of tidewhere by an ocean of uniform depttihe natural period of
generating forces, being coupled to the position of the suffree oscillation is longer than the 12-h driving period. Thus
(moon), rotates as a whole while the symoon travels the dynamical theory predicts in this case a stationary circu-
along its apparent daily path around the earth. This rotatiotating elliptically shaped wave whose axihe line of tidal
of the forces occurs at an angular velocidy the angular bulges is perpendicularto the earth—sufearth—moopline.
velocity of the earth’s daily rotatioffor the difference be- On the other hand, the natural period of an elastic wave in
tween() and the angular velocity of the moon in its orbit for the crust of the earth is shorter than the 12-h period of the
moon-induced tidgs Such a uniform rigid rotation of the tidal forces. Hence, in the frictionless model, bulges in the
system of mutually fixed vectors can be represented as earth’s crust are orientealong the earth—suriearth—moop
superposition of two oscillating quadrupole systems of forcedine. Observations show that the solid body of the earth ac-
(with a frequencyw = 2Q) that do not rotate and whose axes tually experiences twice-daily tides with maximum ampli-
make an angle of 45° to one another. At each point one ofude of about 30 cm whose bulges lag approximately 3°
these forces oscillates along the radi@értica) direction,  behind the earth—moon linfé.
while the other force—along the tangentialorizonta) di-
rection. The oscillations of these orthogonal components oc-
cur a quarter period out of phase. At any given point in the
equatorial plane, the vector sum of these mutually orthogona>F' MATHEMATICAL DESCRIPTION OF THE
oscillating forces produces a force of constant magnitudé;ORCED OSCILLATIONS
whose direction rotates uniformly following the apparent
motion of the sun(moon, but with angular velocityw
=20.'% For different points on the earth, the phases of thes
rotating vectors differ.

Each of the partial forced oscillations can be described by
& differential equation of a linear oscillator. Lgf(t) be the
normal coordinate describing the first forced oscillation
whose elliptical shape is characterized by a major axis ori-
ented along the earth—sun litend in the perpendicular di-
IX. THE TIDES AS FORCED OSCILLATIONS OF rection after a half period and letg,(t) be the normal co-
THE OCEAN ordinate describing the second oscillation with the axis
nclined 45° to the earth—sun line. A disturbance of the water

lation of the ocean surface due to the time-dependent tid urface caused by the f|rs_t osqllatlon can be de.scrlbgd by
forces. Each of the two oscillating systems of forces deAr1(6:t)=0ai(t)cos(2), which gives the small vertical dis-
scribed above excites a mode of forced oscillation of the?lacement of the surface at an arbitrary poiry,¢) of the
water in the equatorial Cana|, Speciﬁca”y the mode of th@quator. S|m|lar|y, the second oscillation causes a distortion
same symmetry as is characteristic of the corresponding sy&f the surface described byr,(6,t)=qy(t)sin(20). The

tem of driving forces. These modes have elliptical shapedorced oscillations experienced by the normal coordinates
much like the natural oscillations considered above, namelyg:(t) andg,(t) are periodic(steady-statepartial solutions

the elliptical standing waves whose axes make an angle aff the two differential equations:
45° with one another. Nevertheless, we can consider these

modes to be orthogonal in the sense that their spatial forms g 1 2,4, + w2q; = w3a coswt,
are described by eigenfunctions forming an orthogonal basis

in the function space. The two forced oscillations in this

linear system, each excited by one system of oscillating driv-  8,+2y0,+ w5lo= wja sinwt.
ing tidal forces, are independent of one another, and the re-

i:fllg{i‘gn‘:)rced motion is a superposition of these forced 0Sygrg , s the natural frequency of the corresponding mode
. — — 1/2 H H
Any steady-state forced oscillation occurs exactly with the(wo_ 2mITo=2(gh) *ro), v is the damping constanty
period of the driving force. The amplitude and phase lag of_ 29. IS the d_rlvmg frequency, and is the magnitude of the .
the oscillation depend on the amplitude of the driving force,€auilibrium distortion of the ocean surface under the static
on the damping factor, and, more importantly, on the relatiorpyStem of tidal forcesthat is, the distortion for the planet
between the driving and natural periods. The two systems g/NoS€ axial rotation is synchronized with its orbital revolu-
oscillating driving tidal forces are characterized by equal am+°"- The theoretical value d is given by Eq(11) or (18).
plitudes and frequencies. Also the natural frequencies anfilthough the values ot» anda are fairly well known, the
damping factors of both excited modes are equal. Hence bofituation is quite different regarding the valuescof and y.
excited modes also have equa| amp"tudes and equa| phasem the |Im|t|ng case of extremely slow rotation of the earth,
delays behind the corresponding driving forces. The supeithe steady-state solution of E@20) is qi(t)=acoswt,
position of these modes produces a forced circulatiray-  g,(t) =a sinwt. This solution describes the quasistatic ellip-
eling) elliptical wave that has the same phase relation withtical distortion whose axis follows adiabatically the slowly
the rotating driving forces as is characteristic of forced os+otating earth—suearth—moopline. The major axis of the
cillations in general. ellipse at any moment is oriented along this line. The dis-
If we ignore friction (dissipation of mechanical energy in placement of the water level from its mean position in the
the excited wave motignthe forced motion occurs exactly equatorial plane in this limiting case is given by

What is really of interest is the steady-state forced oscil?

(20
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Ar(6,t)=Ar(6,1)+Ar,(6,t) viates only slightly from the line perpendicular to the sun—
earth(moon-earthline, but the particular value of this de-

=(1(t)cos 20+ q,(t)sin 20 viation remains indefinite.
_ ; : In the above discussion, we considered only the steady-
= + —_ ’ .

a(cos A}t cos 2+ sin 202t sin 26) state oscillation of the ocean surfatibe stationary wave
=acosAOt—0). (21)  assuming that the transient is already over. For this steady

i i ) ) motion to establish itself, some frictiaeven if very small

To find the distortion of the water surface for an arbitrary g necessary. In the problem under consideration, we are con-
value ofw, we can use the relevant well-known steady-statgerned with the water motion caused solely by the eternal
solution to Eq.(20) for the normal coordinates;(t) and  tjgal forces, and therefore we have had centuries and even

d2(t): millennia to wait for the fading away of the transient. There-
: fore our use of the steady-state solution is appropriate for

du(t)=docodwt=9), Ga(t)=Cosiwt=0), (22 y4es \We also emphasizeythat in the dynamirc):gl &eory of

where their common amplitudsg, and phase lag are given tides, the driving tide-generating forces are perfectly well

by known, so that most uncertainties originate primarily from a
very poor correspondence between the simple model of the

wga dynamical system and the real oceans of the earth.

o= \/(wg—w2)2+4'y2w2,

2y (23 Xl. REAL-WORLD COMPLICATIONS
w
tano= woz_ w?’ The pattern of tide-generating forces is coupled to the po-
sition of the moor(and the supwith respect to the earth. For
(See, for example, Ref. 18, pp. 372—37Bnherefore the re- any place on the earth’s surface, the relative position of the
sulting distortion of the water surface under the tidal forces isnoon has an average periodicity of 24 h 50 min. The lunar

given by tide-generating force experienced at any location has the

_ same periodicity. When the moon is in the plane of the equa-
Ar(0,0=A4ry(6,)+Arz(0,1) tor, the force runs through two identical cycles within this
=(4(t)cos 20+ q,(t)sin 260 time interval because of the quadrupole symmetry of the

] ) global pattern of tidal forces. Consequently, the tidal period
=0Qo[cog 20t~ 5)cos 0+sin(20t—5)sin260]  js 12 h 25 min in this casé&he period of the semidiurnal
_ _ o lunar tide. However, the lunar orbit doesn't lie in the plane
= 0o COS A= 512 6). 24 of the equator, and the moon is alternately to the north and to
We see from Eq(24) that at any time t the maximum the south of the equator. The daily rotation of the earth about
(high watej of the tidal wave circulating around the earth is an axis inclined to the lunar orbital plane introduces an
located at the position defined by the anglg,=Qt—&2.  asymmetry in the tides. This asymmetry is apparent as an
That is, the position of the maximum lags behind the surinequality of the two successive cycles within 24 h 50 min.
(moon by the angles/2. If y<w, it follows from Eq.(23) Simila_rly, the sun causes a se_midiqrnal solar tid_e with a
that this retarding angle is almost zerodf< wg. In other ~ 12-h period, and a diurnal solar tide with a 24-h period. In a
words, the marine tide would be nearly the equilibrium tidecOmPplete description of the local variations of the tidal
with the high-water time coinciding with culminations of the forces, still other partial tides play a role because of further
sun(moon if the natural period of the circulating wave were inequalities in the orbital motions of the moon and the earth.
less than the 12-h driving periodhat is, if To<T). How- In particular, th_e elliptical shape of the moon’s orbit pro-
ever, for our model of the ocean, we estimate the naturafuces @ 40% difference between the lunar tidal forces at the
period to be close to 30 h. Therefore the situation correP€rgee and apogee of the orbit. Also the inclination of the

o moon’s orbit varies periodically in the interval 18.3°—-28.6°,
sponds tow=>wo, When the steady-state forced oscillations ..\ " 0o ial ido with p)tlariod of 18.6 yr. The interfer-
oceur near_ly in the opposite phase _relatlve o the drIVmgcnce of the sun-induced tidal forces with. the .moon-induced
force. In this case the tide should be inverted with respect tﬁd

the equilibrium one. The retarding angi? approachesr/2 caﬁls;?s,rfﬁs(rtgeu:gﬁ;rfi%rticgr? oé}rfh:?iggtl rzaﬁ té”g)eest as i?ntbong
according to Eq(23), which means that for a given equato- 9 9 VEREMg

h . : : tide, when the range has its maximufccurring at a new

gﬁnlq cF))sotlrz]att' t:]heehrg)ﬁ? oggtﬁgrot%%%rsatﬁgi?trfhoi rs{ggicr) on is moon and at a full moon, when the sun and moon are in the
At any given place on the equator, it follows from E24) same or in the opposite directionandneap tide when the

that the water levelabove the average valuearies with t range has its minimurtwhich occurs at intermediate phases

according toz(t) =q cos(2it—6), wheret=0 corresponds g;g]setr:gogr?ipﬁgeds g]fpgtlrj]ggpotfidae.sprmg tide may be 2.7

to the culmination of the suimoon at the place in question. " ga.a,ise the earth is not surrounded by an uninterrupted
We can expect that for the model of a water canal of uniformyaser envelope of equal depth, but rather has a very irregular
depth, the value ofj, given by Eq.(23) is more or Iess  gengraphic alternation of land and seas with complex floor
reliable because hydrodynamics allows us to e_stlmate thﬁeometry, the actual response of the oceans and seas to the
natural frequencywo=2m/To=2(gh)"%r, by using the tidal forces is extremely complex. In enclosures formed by
known speedv=(gh)¥2 of very long gravitational waves. gulfs and bays, the local tide is generated by an interaction
However, considerable uncertainty is related to the dampingyith the tides of the adjacent open ocean. Such a tide often
factor y. If we assume that the damping is smajl€w,), takes the form of a running tidal wave that circulates within
we can conclude that the orientation of the tidal bulges dethe confines of the enclosure. In some nearly enclosed seas,
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such as the Mediterranean, Black, and Baltic seas, a steady-
state oscillation in the form of a standing wave, or tidal se-
iche, may be generated by the tidal forces. In these seas, the

tidal range of sea level is only on the order of centimeters. In f ‘1‘.1}1 M h F> F
the open ocean, it generally is on the order of decimeters. e
In bays and adjacent seas, however, the tidal range may be ‘ ‘}‘.‘H‘ ‘H‘.‘}‘ 7 F' F, ~ A

much greater because the shape of a bay or adjacent sea may
favor the enhancement of the tide inside. In particular, there
may be a resonance response of the basin concerned with the
tide. Tides are most easily observed along seacoasts, Whergig 4. Gravitational interaction between the moon and the tidal bulges.
the amplitudes are exaggerated. When tidal currents run into

the shallow waters of the continental shelf, their rate of ad-

vance is reduced, the energy accumulates in a smaller voitamping out If the earth is taken as the reference frame, we
ume, and the rise and fall are amplified. The details of tidakan see that by virtue of this phase shift and the correspond-
motions in coastal waters, particularly in channels, gulfs, anghg displacement of bulges, the tidal forces exert a retarding
estuaries, depend on the details of coastal geometry andrque relative to the earth’s axis and thus do nonzero net
water-depth variation over a complex sea floor. Tidal ampliwork on the system. This work compensates for the frictional
tudes and phase lags, the contrast between spring and nej@gses experienced by the tidal traveling surface wave and
tides, and the variation of times of high and low tide all measures the gradual reduction of the mechanical energy of
change widely from place to place. the system. The energy is provided by the axial rotation
For the aforementioned reasons, a purely theoretical calspin) of the earth. Hence the spin secularly slows down and
culation of the times and heights of tides at a particular lothe angular momentum of the axial rotation diminishes.
cation is practically impossible. Nevertheless, for a given | ooking at the whole system from the inertial reference
place on a coast, the tides can be quite successfully predicteéghme, we should remember that the smoon interacts
on the basis of accumulated long-term observations of th@th the earth only by its central gravitational force. If the
tides at the place concerned. The analysis of the observatiomgjges were oriented exactly along or perpendicularly to the
relies on the fact that any tidal pattern in time is a superposun earth(moon—earth axis, this gravitational force would
sition of variations associated with periodicities in the mo-not exert a torque on the earth. If we consider the gravita-
tions of the moon and the sun relative to the earth. Thejonal forcesF, and F, (Fig. 4) exerted on the bulges, we
periods involved are the same everywhere on the earth, bypnclude that the retarding torque about the earth’s axis,
the relative amplitudes and phases of their contributions arghich slows down the axial rotation, is due to the above-
highly variable from one place to another. Observations ovepentioned displacement of the bulges which destroys the
a sufficient time make it possible to calculate which contri-symmetry of the system with respect to the earth—sun
butions are significant at a particular location and, thus, tQearth—moonline.
forecast tidal times and heights. It is common that 40 har- However, the total torque of the central gravitational field
monic components may be significant for practical calculayf the sun(moon exerted on the earth and the bulges of its

tions at one locatioft! liquid shell, measured relative to the s(ot to the moon for
moon-induced tides is zera Hence the total angular mo-
XIl. THE EVOLUTION OF ORBITAL MOTIONS mentum of the system is conserved, as it should be in any
AND SPINS OF CELESTIAL BODIES INDUCED BY qlosed_ system. The dlmmlshln_g of the earth’s spin due to
TIDAL FORCES tidal friction means that the orbital momentum of the system

slowly increases during the tidal evolution. The earth’s orbit

When the forced motion occurs exactly in the same ogradually expands. The lack of symmetproduced by tidal
opposite phase with respect to the driving force, no energq}riction) does not influence the conservation of total angular
exchange occurs on average between the external source am@mentum, although it causes a slow secular redistribution
the oscillatory system. To explain the secular variatigre ~ of the angular momentum between the spin and the orbital
retardation of the earth’s axial rotation under the tidal motion. As the orbit expands, the mechanical energy of the
forces, we have to take friction into account. orbital motion also increases. This additional mechanical en-

One may wonder why the dissipation of mechanical en€rgy, as well as the dissipated energy, is borrowed from the
ergy in the tides has a scale that seems very modest. Tighergy of axial rotation?
point is that only thevavecirculates around the globe, not  This conclusion about expanding the moon'’s orbit, derived
the water itself. The phase lagof the steady-state forced from the conservation of angular momentum, is often en-
oscillation behind the periodic driving force is determined bycountered in the literaturésee, for example, Ref. 20Al-

Eq. (23). For the mode of oscillations in which we are inter- though quite convincing, it nevertheless leaves the actual
ested, this phase-frequency characteristic is almost a stépechanism unexplained. To understand the physical reason
function (zero forw<wyg, that is, forT>T,, and — oth-  for this phenomenon, it helps to take the forces into account.
erwisg. Only near resonancewf~ wo) is this step slightly If we consider the properties of the gravitational forégs
smoothed over. Therefore the displacement of the tidal wateand F, (see Fig. 4 that are exerted on the moon by the
bulges from the line perpendicular to the sun—eantbon—  earth’s tidal bulges and their influence on the orbital motion,
earth axis is very small. we draw attention to a subtle peculiarity that deserves dis-

However, this displacement, which destroys the symmetrgussion. While the orbit expands, the orbital velocity of the
of the system(Fig. 4), is absolutely necessary in principle in moon diminishes. However, from the asymmetry in the con-
order that the driving tidal forces be capable of maintainingfiguration that is responsible for the evolution, we can con-
the circulating tidal wave(that is, of preventing it from clude that the resultant gravitational force exerted on the
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~ 1 % This effect is vital to an understanding of the history of the
earth and moon. That the moon always keeps the same face
turned toward the earth is attributed to the past effects of
tidal friction in the moon. The dissipation of tidal energy on
the earth results in a slowing of the earth’'s axial rotation
while the moon’s orbit is gradually expanding. Both the cur-
F rently observed increase in the length of the day of 0.0016
n F s/century and the recession of the moon of 3 to 4 cm/yr are
T - -
understood as consequences of the tides raised by the moon
on the earth. Billions of years from now the moon will be so
far from the earth that the duration of the month will be
equal to the duration of the day. The tidal evolution of the
/ system ends with synchronization of the axial rotation of
both orbiting bodies with their orbital revolution. The length
of both the day and month in this final state of coherent
rotation will be approximately 50 present days, as can be
Fig. 5. The main(centra) gravitational pull of the earth exerted on the calculated on the basis of aﬂg!ﬂaf'm‘?memum conservation
moon. (see, for example, Ref. 13Similarly, tidal effects on the
earth influence its axial rotation and its orbital revolution
around the suf?

moon by the tidal bulges is directddrward, in the direction Tidal dissipation accounts for the current states of axial
of the orbital motion. How can this accelerating force slow'otation of several planets, the spin states of most of the
down the orbital motion? All authors who write about tidal Planetary satellites, and the spins and orbits of close binary
evolution leave this question unanswered. stars. For example, all the major and close planetary satel-
This situation is similar to the widely known paradox of lIteS in the solar systertwith the exception of Saturn's sat-
an earth satellite in a circular orbit that gradually descends ifg/it¢ Hyperon are observed to be rotating synchronously
the rarified upper atmosphere: Intuitively we expect that thVith their orbital motion. The distant planet Pluto and its
weak atmospheric drag should slow down the satellite, bug@tellite Charon are the pair in the solar system that has al-
instead, the satellite gains speed as its orbit gradually d¢nost certainly reached the end point where further tidal evo-
creases. Because of air resistance, the satellite is acceleratdfion has ceased. Inhth|s statle thghorglt IS C'.rClljlar’ with both
in the direction of its motion, as if the retarding force of air odrlles rotating sync ronomljs y W';] the .Orlb'tf‘ motlpn'lanld
resistance were pushing the satellite forward. An explanatioRth Spin axes perpendicular to the orbital plane. Similarly,

of this so-called aerodynamical paradox of the satellite caf@ny close binary stars are observed to have circular orbits
be found in Ref. 21. and synchronized spins, providing numerous examples of

To understand the slowing down of the moon during tid‘,j“evolutior) und'er tidal forces elsewhere.in the Milky Way. The
evolution, we must take into account that the moon gradually©!€ Of tides in the cosmogony was first recognized by the
spirals away from the earth and its orbit spreads out, so thgStronomer George Darwin, who developed a theory of the
the actual motion of the moon occurs along an expanding/€avenly evolution under tidal frictiof. :
spiral. A portion of this trajectorywith a strongly exagger- _ Another interesting manifestation of the tidal forces is the
ated expansioris shown schematically in Fig. 5. Because of Roche limit the minimum distance to which a largeatura)
this expansion, the perpendicular to the trajectory is directe§at€llite can approach its primary body without being torn
not to the center of the earth but rather slightly in front of the@Part by tidal forces. To evaluate this critical distafze we
center. Therefore the main gravitational plexerted on the ~ €an equate the vertical tidal force, H@), exerted on a mass
moon by the earth has a retarding tangential compoRent Point located ap=0 or 6= on the surface of a satellite of
directed back along the trajectory. This component is greatei@diusr soyand massng, by its primary of massv, and the
in magnitude than the forward-directed tangential componerforce of self-gravitation of the satellitehat is, the force of
of F andF} (see Fig. 4that are exerted on the moon by the gravitational attraction of this mass poimtto the satellitg
tidal bulges(this component is not shown in Fig).3Hence
the total tangential acceleration of the moon is directed GmM Gmimyy
against the velocity. 2R3 Tsam 7

Generally, in order to explain tidal evolution, that is, the ¢ sat
reduction of spin and the secular variation of the orbits of
gravitationally coupled celestial bodies, it is necessary tgVhence
take into account both the dynamic distortion of the spherical
shape of the bodyand of its liquid shell, if any under the 3 2M 3 2p
tidal forces, and the additional displacement of the bulges Rc=Tsat m_:rplanet — (25
caused by tidal friction. The nonuniform gravitational field sat Psat
of one body in an orbit about another distorts the shape of ) ) _ .
the second. The dissipation of energy stored in the resultatf E9- (29) T'pianetiS the radius of the primary, is its mean
tidal distortions leads to a coupling that causes seculaf€nsity, anths,is the satellite’s mean density. If the satellite
changes in the orbit and in the spins of both bodies. Reta@nd its primary are of similar compositiop € ps,), the the-
dation of the axial rotation and evolution of the orbit will oretical limit is about 2*=1.26 times the radius of the
continue until the axial rotation is synchronous with thelarger body. The famous rings of Saturn lie inside Saturn’s
mean orbital revolution. Roche limit and may be the debris of a demolished moon.
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