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A detailed treatment of tide-generating forces is given, followed by a simplified dynamic theory of
tidal waves. To clarify the underlying physics, we use a simple model of the ocean that consists of
a water shell of uniform depth completely covering the globe. The treatment is appropriate for
college and university undergraduate students studying introductory geophysics or astronomy,
general physics, or intermediate mechanics. A computer simulation is developed to aid in
understanding the properties of sun- or moon-induced tide-generating forces and of the stationary
tidal waves created by these forces in the open ocean. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

All textbooks in introductory astronomy and many
physics and intermediate mechanics mention the existenc
oceanic tides as an interesting manifestation of unive
gravitation. Pedagogical papers devoted to the tides~see, for
example, Refs. 1–9! testify to the fact that many teachers a
interested in this topic, but are not satisfied with the clar
and correctness of the commonly accepted explanation
the physics of tidal phenomena. A review of textbooks a
related literature shows that the most important aspects o
origin and properties of tides are often treated inaccuratel
even erroneously. Much of the confusion over generat
tides is related to the roles of the orbital motion of the mo
and earth about their common center of mass and of
earth’s axial rotation. In discussing the physics behind t
phenomenon, authors usually explain~more or less success
fully ! why two tidal swells appear on the opposite sides
the globe. However, it is difficult to find a plausible expl
nation of the physical mechanism responsible for the ph
shift between the zenith of the moon and the moment of h
tide, which at some places approaches 90°. Misunderst
ings also occur in discussions about the role of tidal frict
in the retardation of axial rotations and in the evolution
orbital motions of the gravitationally coupled celestial bo
ies.

To clarify the basic physics underlying the tidal pheno
ena, we suggest a rather simple but rigorous treatment o
tide-generating forces, followed by a theory of the circul
ing tidal wave produced by these forces. This treatment u
a simplified model of the ocean consisting of a water shel
uniform depth entirely covering the globe. A computer sim
lation is developed to support the analytical treatment.10 The
simulation gives a dynamical picture of the forces and
tidal wave driven by these forces in the open ocean. T
paper and the simulation are intended only to clarify
physical background of this natural phenomenon and do
assume to describe the complete picture. The purely theo
ical quantitative description of tides for a given location
the earth, derived solely from first principles, is hardly po
sible because of the extremely complex structure of
oceans, the actual system that responds with tides and
currents to the well-known tide-generating forces.

The paper is organized as follows. First we discuss qu
tatively the physical nature of the sun- and moon-induc
tide-generating forces in a nonrotating geocentric frame
reference, deriving the mathematical expressions for th
1001 Am. J. Phys.70 ~10!, October 2002 http://ojps.aip.org
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forces at an arbitrary point on the earth. Next the static~equi-
librium! distortion of the ocean surface under these force
determined. Then we show that the same expressions fo
tidal forces are applicable on the rotating earth, and we
cuss how these forces depend on time. We show that a
form rotation of the system of tidal forces coupled with t
apparent motion of the sun~moon! can be represented as
superposition of two oscillating quadrupole systems of for
whose axes make an angle of 45° with respect to one
other. Each of these systems of forces generates a ste
state forced oscillation of the ocean~a standing wave!. Next
we treat the tidal wave circulating around the globe as
superposition of these standing waves. Finally the real-wo
complications of this simplified picture are discussed brie
as well as the role of tidal friction in the evolution of th
axial rotations and orbital revolutions of celestial bodies.

II. THE TIDE-GENERATING FORCES: AN
ELEMENTARY APPROACH

The tides are manifested by alternating vertical displa
ments of the surface of the sea coupled with horizon
movements of the water that are called thetidal currents. It
is well known that the tides are caused by the varying gra
tational forces that the moon and sun exert on both the e
and its oceans. More exactly, the origin of tidal phenomen
related to the inhomogeneity~nonuniformity! of the lunar
and solar gravitational fields across the globe.

The gravitational force the moon exerts on any body
the surface of the earth is much smaller than the gravitatio
force of the sun. However, because the moon is much clo
to the earth than the sun, the inhomogeneity of the lu
gravitational field across the earth is considerably grea
than that of the solar field. As a result, moon-induced tid
are more than twice as great as sun-induced tides. Neve
less, to arrive more easily at an understanding of the phys
origin of tide-generating forces, we begin our analysis w
sun-induced tides. These are somewhat simpler to exp
because the center of mass of the sun–earth system
nearly coincides with the center of the sun.

We next divide the problem into two parts: First we di
cuss the origin and properties of tide-generating forces, a
which we investigate qualitatively the much more comp
cated case of the dynamical effect that these time-vary
forces have on the ocean. We note that much of the co
1001/ajp/ © 2002 American Association of Physics Teachers
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sion in the literature is related to the first~rather simple! part
of this problem, which can be completely and unambig
ously solved using Newtonian mechanics.

The earth as a whole moves with an acceleration rela
to an inertial reference frame. This acceleration is produ
by the gravitational attraction of the earth to the sun~and
also to the moon and to all other celestial bodies!. Although
the earth travels in an almost circular orbit, its centripe
accelerationa0 in this orbital motion is generated by th
gravitational pull of the sun and hence is just theaccelera-
tion of free fall, which is independent of the orbital velocit
The earth would move with the same acceleration wer
freely falling in the gravitational field of the sun. What
important in this problem is the acceleration, not the orb
velocity, of the earth.

To better understand the tides, we first use anonrotating
geocentric reference frame. Although the origin of this fra
moves approximately in a circle around the sun~more ex-
actly, around the center of mass of the sun–earth system!, the
frame itself does not rotate because the directions of its a
are fixed relative to the distant stars. That is, the motion
this frame—revolution without rotation—is a translation
~though nearly circular! motion. It reminds us of ‘‘the circu-
lar motion of the frying pan’’ in the hands of a cook~see Ref.
1!. With respect to inertial space, all points of this referen
frame move with an accelerationa0 whose magnitude and
direction are the same for all the points. Any body of massm
whose motion is referred to this noninertial geocentric fra
~for example, an earth satellite, or a drop of water in
ocean! is subject to the pseudoforce of inertia,Fin52ma0 ,
which is independent of the position of the body relative
the earth. If the body were placed at the center of the ea
this pseudoforce would exactly balance the gravitational
traction of the body to the sun. In other words, if we consid
the earth as a giant spaceship orbiting the sun, a body pl
at the center of this ship would seem to be weightless w
respect to the gravitation of the sun, just as astronauts o
orbital station seem to be weightless in the gravitational fi
of the earth.

The force of inertia,Fin52ma0 , experienced by a body
in the freely falling geocentric frame of reference~or in the
frame that revolves without axial rotation about the su
earth center of mass!, has the same magnitude and directi
everywhere on the earth. On the other hand, the gravitati
pull of the sun,Fsun, experienced by the body diminishe
with its distance from the sun and is directed to the sun,
hence both the magnitude and direction ofFsundepend on the
position of the body on the earth. Because the earth is
extended body, the pseudoforceFin and the forceFsun are
generally unequal and not exactly opposite, except at
center of the earth. The combined actions of the gravitatio
pull of the sun and the pseudoforce of inertia is thetidal
force.

In other words, the tidal force at a given position near
earth equals the vector difference of the gravitational pull
sun exerts on an object at this position and the gravitatio
pull the sun would exert on this object were it at the cente
the earth. We may avoid using a noninertial reference fra
if we are not inclined to introduce the concept of the pseu
force of inertia to students. In doing so, we can use a so
what different language in the subsequent derivation of
tidal force: Instead of discussing the vector addition of
pull of the sun and the corresponding pseudoforce of ine
1002 Am. J. Phys., Vol. 70, No. 10, October 2002
-

e
d

l

it

l

e

es
f

e

e
e

h,
t-
r
ed
h
an
d

al

d

n

e
al

e
e
al
f
e
-

e-
e

e
ia

arising from the noninertial character of the reference fram
we can use instead an inertial frame, in which the tidal fo
can be found by the vector subtraction of the gravitatio
force of the sun on the body at its given location with t
force of the sun on the body were it located at the cente
the earth. Indeed, when viewing the situation on the ea
from the inertial frame of reference, we can apply the G
ilean law according to which, in the same gravitational fie
~here the field of the sun!, all free bodies experience equ
accelerations. Hence the earth as a whole and all free bo
on the earth, being subjected to almost the same solar g
tational field, are very nearly accelerated toward the s
Consequently we do not particularly notice the influence
solar gravitation on what happens on earth. The small dif
ences between the acceleration of the earth as a whole a
the earthly bodies depend on the distances of the bodies
the center of the earth because these differences are ca
by the nonuniformity of the solar gravitational field over th
extent of the earth.11

These differential effects of gravity give rise, in particula
to solar gravitational perturbations of an earth satellite’s g
centric orbit. The tide-generating forces slightly distort t
earth’s gravitational pull that governs the satellite’s moti
so that after a revolution, the satellite does not return to
same point of the geocentric reference frame. On the sur
of the earth, these same forces give rise to the tides.
emphasize that tidal forces are caused not by the sun’s g
tational field itself, but rather by the nonuniformity of th
field.

Figure 1 illustrates the origin and properties of the tid
generating forces produced by the sun. The free-fall ac
eration of the earthE in the gravitational field of the sunS is
a05GMsun/R

2, whereM sun is the mass of the sun, andR is
the sun–earth distance. The gravitational pull of the sunFsun

experienced by the body~for example, a satellite! at pointA
almost equals the force of inertiaFin in magnitude because
the distances to the sun from the body and from the cente
the earth are very nearly equal. However, at pointA the
direction of the gravitational forceFsun is not exactly oppo-
site to the force of inertiaFin . Thus their nonzero resultan
the tidal forceFA at pointA, is directed toward the earth. It
magnitude equalsma0b5ma0(r /R)5(GmMsun/R

2)(r /R),
whereb5r /R is the angle between the body and the cen
of the earth as seen from the sun. The tidal forceFB at the
opposite pointB equalsFA in magnitude and is also directe
vertically downward to the earth. On the surface of the ea
the tidal force is directed vertically downward at all plac
~forming a circle! where the sun is in the horizon at th
moment.

The distance from the sun to the body at pointZ ~for
which the sun is at the zenith! is smaller than to the center o
the earth. Here the gravitational pull of the sun points exac

Fig. 1. Sun-induced tide-generating forces at different pointsA, B, Z,
andN.
1002Eugene I. Butikov
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opposite to and is somewhat greater than the force of ine
Hence, the tidal forceFZ at this point is directed vertically
upward, from the earth toward the sun. Its magnitude,

FZ5G
mMsun

~R2r !2 2ma05ma0F R2

~R2r !2 21G
'ma0

2r

R
5G

mMsun

R2

2r

R
, ~1!

is approximately twice the magnitude of the tidal forces
pointsA andB. Similarly, at the opposite pointN ~for which
the sun is at its nadir! the force of inertia is greater than th
gravitational pull of the sun, and so the tidal forceFN at point
N is also directed vertically upward from the earth~and from
the sun!. In magnitude,FN approximately equalsFZ .

The expressions for the tidal forces,FA5(GmMsun/R
2)

3(r /R) andFZ given by Eq.~1!, are valid also for the tidal
forces produced on the earth by the moon if we replaceM sun

by the mass of the moon andR by the moon–earth distance
There is no intrinsic difference between the sun-induced
moon-induced tide-generating forces. In both cases, the
important factor is the acceleration of the earth under
gravitational pull of the celestial body that causes the ti
on the earth, not the orbital velocities of both gravitationa
coupled bodies~the earth and the sun, or the earth and
moon!.

The tidal force experienced by any object is proportio
to its distancer from the center of the earth and inverse
proportional to the cube of the distanceR to the celestial
body that causes the force, and is proportional to the mas
the source body. As noted, lunar tide-generating forces on
earth are more than twice those of the sun~their ratio is
approximately 2.2! because the moon is much closer to t
earth.

III. TIDAL FORCES AT AN ARBITRARY POINT
NEAR THE EARTH

The standard derivation of tidal forces uses the ti
generating potential~see, for example, Refs. 12 and 13! for
which the mathematics is somewhat simpler. However,
emphasize the physics underlying the origin of tid
generating forces, we consider the vector addition of the
evant forces, just as in the elementary treatment of Sec. II
obtain a general mathematical expression for the ti
generating force at an arbitrary pointD over the earth~Fig.
2!, we introduce the radius vectorr of this point measured
from the center of the earth, and also the vectorr s5R1r
measured from the center of the sun,S, whereR is the vector
of the center of the earth from the center of the sun.

The tidal forceFtid experienced by a body of massm at
point D in the noninertial, nonrotating geocentric frame

Fig. 2. For calculation of the tide-generating force at arbitrary pointD.
1003 Am. J. Phys., Vol. 70, No. 10, October 2002
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the vector sum of its gravitational attraction to the sun,Fsun

52GmMsunr s /r s
3, and the force of inertia,Fin52ma0

5GmMsunR/R3:

Ftid5Fsun1Fin52GmMsunS r s

r s
3 2

R

R3D . ~2!

We expressr s in Eq. ~2! as the vector sumR1r and calcu-
late the square ofr s . We take into account thatr !R and
write

r s
25~R1r !25R212~R"r !1r 2'R2S 112

~R"r !

R2 D . ~3!

To find an approximate expression for 1/r s
3 in Eq. ~2!, we

raise the right-hand part of Eq.~3! to the power (23/2). If
we substitute the resulting value of 1/r s

3 into Eq.~2! for Ftid ,
we obtain:

Ftid'2G
mMsun

R3 F ~R1r !S 12
3~R"r !

R2 D2RG
'2G

mMsun

R3 F r23R
~R"r !

R2 G . ~4!

We note that the main contributions ofFsunandFin to Ftid ,
whose magnitudes are inversely proportional toR2, cancel in
Eq. ~4!. This cancellation corresponds to the aforemention
state of weightlessness that we experience on the space
Earth with respect to the sun’s gravity. For pointsA andB in
Fig. 1, r is perpendicular toR, and hence the scalar produ
~R"r ! is zero. Therefore at these points the tidal force
directed opposite tor ~that is, vertically downward!, and its
magnitude equalsGmMsun(r /R3). For pointsZ and N, the
tidal force is directed alongr ~that is, vertically upward!, and
its magnitude 2GmMsun(r /R3) is two times greater than a
pointsA andB. We see that at these four points, the gene
result given by Eq.~4! agrees with the simpler calculation
of Sec. II.

IV. HORIZONTAL AND VERTICAL COMPONENTS
OF THE TIDAL FORCE

The sun-induced tide-generating forces exerted on
earth have a quadrupole character: They stretch the e
along the sun–earth line, and squeeze the earth in the d
tions perpendicular to that line. Because of the axial symm
try with respect to the sun–earth line, the vertical and ho
zontal components of the tidal force depend only on
angle u shown in Fig. 2~and on the distancer from the
center of the earth!. The angleu determines the position o
the mass pointm on or near the surface of the earth me
sured from this line.

Figure 3 shows how the tidal forces are directed at diff
ent points near the earth. Because of axial symmetry ab
the sun–earth line, Fig. 3 applies to any plane pass
through the sun–earth line.

The horizontal~tangential to the surface! components of
the tidal forces are much more influential on the ocean ti
and on the orbits of earth satellites than are the vertical~ra-
dial! components, which only modify slightly the earth
gravitational force. For the horizontal component of the tid
1003Eugene I. Butikov
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force at an arbitrary pointD, whose geocentric position i
determined by the two coordinatesr and u ~in the plane
shown in Fig. 2!, Eq. ~4! yields:

~F tid!hor523G
mMsun

R3 r cosu sinu

523Fsun

r

R
cosu sinu52

3

2
Fsun

r

R
sin 2u, ~5!

whereFsun5GmMsun/R
2 is the gravitational pull of the sun

on the body. The horizontal component of the tidal force
zero at pointsA and B and at all other points of the plan
orthogonal to the line sun–earth~for which u590°!, as well
as at pointsN and Z ~for which u50° andu5180°!. The
horizontal component of the tidal force has its maximu
value (3/2)(r /R)Fsun5(3/2)(r /R)GmMsun/R

2 at all points
on the earth for whichu545° andu5135°. This maximal
horizontal component of the solar tide-generating fo
causes a deviation of the plumb line from the direction of
earth’s own gravity only by 0.0089.

If we take the scalar product of the right-hand side of E
~4! for Ftid with the unit vectorr /r , we obtain the depen
dence of the vertical component (F tid)vert of the tidal force on
the angleu betweenR and r :

~F tid!vert5G
mMsun

R3 r ~3 cos2 u21!

5
3

2
G

mMsun

R2

r

R S cos 2u1
1

3D . ~6!

The last term on the right-hand side of Eq.~6! is indepen-
dent of u and is thus independent of time on the spinni
earth. It can therefore be dropped as far as the tides
concerned. This term in the vertical component of the ti
force is the same everywhere on the earth~for a given value
of r ! and adds only a tiny constant value to the vertical fo
of the earth’s gravity~about ten million times smaller tha
mg!. Thus, the vertical and horizontal components of
tidal force exerted on a body of massm located at a position
determined by angleu and radiusr are given by:

Fvert5~3/2!~r /R!Fsuncos 2u,
~7!Fhor52~3/2!~r /R!Fsunsin 2u,

whereFsun is the total gravitational pull of the sun exper
enced by the body anywhere on the earth. This representa
of the tide-generating force is especially convenient beca
Eq. ~7! defines a tidal force vector whose magnitude (3
3(r /R)Fsun5(3/2)GmMsunr /R3 is independent of the angl
u: The tidal forces at all points that lie at a given distancer

Fig. 3. Directions of the tidal forces at different equatorial points near
earth.
1004 Am. J. Phys., Vol. 70, No. 10, October 2002
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from the earth’s center are equal in magnitude and differ o
in direction.

Equations~5!–~7! also are valid for the tidal forces pro
duced by the moon, provided we replace the mass of the
M sun by the mass of the moonMmoon and the sun–earth
distanceR by the moon–earth distance. In this case the an
u in Eq. ~7! determines the position of the body relative
the moon–earth line.

The tide-generating force of the moon,F tidal

5(3/2)GmMmoonr 0 /R3, experienced by a body of mass
on the surface of the earth~r 0 is the earth’s radius! is very
small compared to its weight—the earth’s force of grav
Fgrav5mg5GmMearth/r 0

2. If we let the ratioMmoon/Mearth

51/81 and the mean earth–moon distanceR560r 0 ~actually
this distance varies between 57r 0 and 63.7r 0 because of the
elliptical shape of the moon’s orbit!, we obtain

F tidal /Fgrav5~3/2!~Mmoon/Mearth!~r 0 /R!3'8.631028.
~8!

Although the maximal lunar tidal force on the surface
the earth is only about 1027 of the earth’s gravitational force
its effect on the ocean water can be considerable becaus
its horizontal component, which is orthogonal to the eart
gravitational field and varies with time periodically becau
of the earth’s axial rotation. The horizontal component sh
the ocean water around the globe.

V. THE STATIC DISTORTION OF THE WATER
SURFACE

To estimate the static~equilibrium! distortion of the
ocean’s surface due to the tidal forces, we can use the h
thetical situation of a nonrotating planet on which the tid
generating forces are nearly time-independent. From
symmetry of tidal forces, Eq.~7!, we can assume that th
distorted surface has an ellipsoidal shape given by

r ~u!5r 01a cos 2u, ~9!

where 2a!r 0 is the difference in the static maximal an
minimal levels at pointsZ andA ~see Fig. 3!. Hence we can
write for the small inclinationa of the water surface with
respect to the horizon:

a5
1

r

dr~u!

du
'2

2a

r 0
sin 2u. ~10!

We see that the water surface is horizontal (a50) at u50
andu590° ~pointsZ andA!. The anglea is maximum and
equals 2a/r 0 at u545° and atu5135°, where the tidal
force is directed horizontally. In equilibrium the distorte
water surface is orthogonal to the plumb line. The plumb l
shows the direction of the vector sum of the earth’s grav
and the tidal force. A small departure of the plumb line fro
the direction of the earth’s gravity is caused by the horizon
component of the tidal force. Therefore, the anglea equals
the ratio of the horizontal tidal forceFhor to the force of the
earth’s gravity Fgrav5mg. If we equatea52a/r 0 at u
545° to Fhor/Fgrav and take into account that for sun
induced tides, Fhor/mg5(3/2)(M sun/Mearth)(r 0

3/R3), we
find for the maximal static level difference 2a at pointsZ
andA:

2a5~3/2!r 0~M sun/Mearth!~r 0
3/R3!. ~11!

e
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Equation ~11! yields 2a50.24 m. A similar expression is
valid for the static distortion of the ocean surface due to
lunar tidal force, and yields 2a50.54 m for the moon-
induced static distortion. In Sec. VII the equation for th
static distortion is also derived from the tide-generating
tential.

VI. TIDAL FORCES ON THE ROTATING EARTH

In the above we have used a revolving but nonrotat
geocentric reference frame. The origin of this frame mo
in a circle around the sun–earth~moon–earth! center of
mass, but the frame itself does not rotate because the d
tions of its axes are fixed relative to the distant stars. Tha
the frame moves translationally in a circle. This referen
frame is convenient for the analysis of a motion of an art
cial satellite. If we ignore the perturbations caused by ti
forces, the earth satellite traces out a closed elliptical o
relative to this reference frame.

To introduce tidal forces on the rotating earth, we must
a true geocentric frame of reference that takes part in
daily rotation of the earth. This frame is noninertial, a
hence we should be concerned with the acceleration o
different points. We can consider the motion of the earth~and
of the geocentric reference frame! as consisting of two com
ponents. The first is the component considered abo
namely translational motion~revolution without rotation!
about the sun–earth~moon–earth! center of mass. The sec
ond component is a uniform daily rotation~spin! of the earth
about an axis passing through the center of the earth.

Both these motions of the earth are important in the pr
lem of tides, but the roles they play are quite different. T
accelerationa0 related to the translational motion is respo
sible for the origin of the uniform pseudoforce of inert
Fin52ma0 , whose action on a body on the earth, combin
with the nonuniform gravitational pull of the sun~moon!, is
described by the tidal forceFtid considered previously. We
note again that only the accelerationa0 of this translational
motion is important, not the orbital velocity of the earth.14 To
avoid confusion often encountered in the literature~see, for
example, Ref. 15!, we must be careful with definitions. I
discussing tides, we should be concerned only with th
gravitational and inertial forces that depend on the appa
position of the celestial body that produces the tide. T
axial rotation of the earth is related to the centripetal acc
eration and gives rise to centrifugal forces that increase
proportion to the distance from the earth’s axis. The centr
gal force of the earth’s daily rotation generally is mu
greater in magnitude than tidal forces. Because of the c
trifugal forces, the equilibrium shape of the earth diffe
slightly from an ideal sphere—it is approximately an elli
soid of rotation whose equatorial diameter is a bit grea
than the polar diameter~see, for example, Ref. 13!. The cen-
trifugal effect of the earth’s daily rotation causes an equa
rial bulge, which is the principal departure of the earth fro
its spherical shape.16

But we are not concerned here with this constant distor
of the earth because this distortion is independent of the
parent position of the celestial body that produces the tid
Therefore, the centripetal acceleration of the axial rotat
adds nothing to tidal forces. However, the daily rotation
the earth makes tidal forces time-dependent because the
tern of tidal forces on the earth is coupled to the appar
positions of the sun and moon. A dynamical response of
1005 Am. J. Phys., Vol. 70, No. 10, October 2002
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oceanic waters on the spinning earth to these time-depen
forces is the essence of the phenomenon of tides.

Thus, in the problem of tides, expressions for the tid
generating forcesFhor andFvert in Eq. ~7! are applicable also
to the true geocentric frame of reference, which takes par
the daily axial rotation of the earth. The system of tid
forces shown in Fig. 3, being coupled to the apparent p
tion of the sun~moon!, rotates rigidly together with the
earth–sun~earth–moon! line. For simplicity, we shall con-
sider the case in which the source celestial body~the sun or
moon! occurs in the equatorial plane of the earth. Althou
the system of tidal forces rotates as a whole with the ang
velocity V of the earth’s axial rotation, that is, with a perio
of 2p/V, the true period of variation of the tidal forces on th
earth equals half this value (T5p/V) because of the quad
rupole symmetry of the system of forces~the semidiurnal
tide!. For the sun-induced tidal forces the period equals 12
For the moon-induced tidal forces the period is 12 h
min—the difference between the periods is due to the orb
motion of the moon. If we fix a point on the equator of th
earth, the local tidal force vector executes a uniform rotat
in the vertical plane, making two complete revolutions d
ing a day. The simulation clearly shows how the daily ro
tion of the whole system of tidal forces produces this dou
fast uniform rotation of the tidal force at a given equator
point, as seen by an observer on the spinning earth.10 Be-
cause of this periodic dependence on time, the tidal forces
spite of their small magnitude compared even to the centr
gal force of inertia, produce the oceanic tides.

To find analytical expressions for the time dependence
the tidal forces at a given point in the equatorial plane of
spinning earth, we substituteu5Vt in Eq. ~7!. This substi-
tution yields the following expressions for the point of th
equator at which the sun culminates~passes through its ze
nith! at t50:

Fvert~ t !5Ar cos 2Vt,
~12!

Fhor~ t !52Ar sin 2Vt,

where A5(3/2)Fsun/R5(3/2)GmMsun/R
3. At any other

equatorial point of the earth, the tidal force vector also
tates in the vertical plane with angular velocity 2V. That is,
all the vectors at different points rotate synchronously
with different phases.

VII. THE POTENTIAL FUNCTION FOR TIDAL
FORCES

An approach often used in deriving an expression for
tidal force is to begin with the potential energy of a bo
under the influence of tide-generating forces. This appro
is simpler than that presented above. However, we have
sen the above approach because it does not obscure th
derlying physics and consequently may be considered ad
tageous to physics instructors. Nevertheless,
completeness, we introduce here the potential funct
U tides(r ,u), and show how it can be used in calculating t
equilibrium shape of the surface of the ocean and the st
distortion of the water under tidal forces.

The components of the force that lie in the equator
plane are given in Eq.~7! and are the negative gradients
the potential functionU tides(r ,u):
1005Eugene I. Butikov
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Fvert5Ar cos 2u52]U tides~r ,u!/]r ,
~13!Fhor52Ar sin 2u52~1/r !]U tides~r ,u!/]u.

Therefore, the potential function for the tidal forces can
written as:

U tides~r ,u!52~1/2!Ar2 cos 2u

52~3/4!~GmMsun/R
3!r 2 cos 2u. ~14!

The restoring forces that limit the tidal distortion of th
water’s surface are due to the earth’s gravity. If the ea
were not rotating relative to the earth–sun line, the sta
distortion of the water surface covering the globe would
the surface of equal total potential:

U~r ,u!5U0~r !1U tides~r ,u!5const, ~15!

where U0(r )5mgr is the spherically symmetric potentia
function of the earth’s gravity which yields the radial com
ponent of the earth’s gravitational force2dU0(r )/dr
52mg. Thus,

U~r ,u!5mgr2~1/2!Ar2 cos 2u. ~16!

In particular, at pointsZ and A ~see Fig. 3! of the water
surface, the values of the total potential function, Eq.~16!,
are equal:U(r Z ,p)5U(r A ,p/2), from whence we obtain

mgrZ2~1/2!ArZ
25mgrA1~1/2!ArA

2 ,
~17!mg~r Z2r A!5~1/2!A~r A

21r Z
2!.

We can use this condition to determine the static equilibri
distortion under the tidal forces of the otherwise spheri
ocean surface. Let the radii of the distorted water surfac
points Z and A be r Z5r 01a and r A5r 02a, respectively,
wherer 0 is the radius of the undistorted surface. Then 2a is
the static level difference at pointsZ and A in which the
level is maximum and minimum, respectively. Thus, fro
Eq. ~17! we have 2mga5(1/2)A(r Z

21r A
2)'Ar0

2, and for 2a
we obtain:

2a5Ar0
2/~2mg!5~3/2!r 0~Fsun/mg!~r 0 /R!. ~18!

We note thatFsun/mg5(M sun/Mearth)(r 0
2/R2), so that the

static distortion of the ocean surface under the sun-indu
tidal forces can also be expressed as:

2a5~3/2!r 0~M sun/Mearth!~r 0
3/R3!. ~19!

This expression is the same as Eq.~11! derived by requiring
that in equilibrium the surface of the ocean be orthogona
the vector sum of the earth’s gravitational force and the ti
force.

VIII. THE NATURAL WAVE AND THE DRIVING
TIDAL FORCES

Most authors oversimplify the problem of tides and co
sider ~after Newton and Bernoulli! only the so-calledstatic
~or equilibrium! theory of tides, which treats the ocean su
face as a liquid ellipsoid stretchedalong the earth–moon
~earth–sun! line, as if this surface were always in equilib
rium under the earth’s force of gravity and tidal forces p
duced by the moon~sun!. In this approach, the tidal bulge
are aligned with the earth–moon~or earth–sun! axis. There-
fore on the spinning earth the moments of high water a
given location should coincide with the upper and lower c
1006 Am. J. Phys., Vol. 70, No. 10, October 2002
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minations of the moon~sun!, that is, when the moon~sun!
passes through its zenith and nadir. Observations do
agree with this prediction. Instead, almost the opposite
usually observed: the moments of low tide occur appro
mately at the culminations of the moon.

A complete theory of the tides should take into account
dynamical response of the ocean to the time-dependent
erating forces. The dynamical theory of tides~first suggested
by Laplace and developed by Airy! treats the tides as a
steady-state forced motion~under varying tidal forces! of a
dynamical system~the ocean!.17 Such a theory predicts a
resonant growth of the steady-state amplitude in cases w
the driving period approaches the period of natural osci
tions.

To avoid the complications related to the thre
dimensional character of the problem and to explain
physical aspect of the dynamical theory using the simp
possible model, we imagine, following Airy, water in a wid
canal of uniform depth engirdling the entire earth along
equator. Imagine the water surface in this canal being
torted statically under the tide-generating forces so that
bulges form on opposites sides of the earth, changing
shape of the surface from circular to elliptical. If the forc
maintaining this shape suddenly vanish, the earth’s gra
would make the distorted surface restore its equilibrium,
cular shape. The water would start to flow and the bulg
disappear so that after a time, namely a quarter period,
water surface would become circular. But because the w
continues to move, after another quarter period the bul
reappear in new positions showing an elliptical distortion
the surface along the line perpendicular to the line of
original distortion. Then the motion repeats itself in rever
This motion of water in the circular canal is a gravitation
standing surface wave whose wavelength equals h
circumference of the globe. Such a mode of oscillation
characterized by a certain natural period.

The superposition of two such standing waves who
phases differ byp/2 and whose elliptical axes are separat
by 45° produces a circulating~traveling! wave of constant
elliptical shape and a wavelength equal to half of the ear
circumference. The two opposite bulges in the water surf
travel with this wave around the globe preserving th
height and shape.10

An essential point in explaining the steady-state ph
shift between the moments of high tide and the culminat
of the moon~sun! is the relation between the natural perio
T0 of this circulating wave and the periodT of the tide-
generating driving forces. It is possible to estimateT0 as the
time taken by the circulating surface wave to travel alo
half the globe. In the limiting case of very long waves on t
surface of shallow water (l@h) the speed of wave is deter
mined by the earth’s gravityg and depthh, and is indepen-
dent of l. From hydrodynamics we know that this spe
equals (gh)1/2 ~see, for example, Ref. 18, p. 405!. We as-
sume that the mean valueh of the ocean depth is 3.5 km
During a periodT0 , the wave travels half the circumferenc
of the globepr 0 , and henceT05pr 0 /(gh)1/2'30 h. Thus,
the approximately 12-h driving external periodT is less than
the natural periodT0 of the free oscillation.

We emphasize that it is the shape of the surface~the wave!
that circulates around the globe,not the water itself. Relative
to the earth, points on the surface of the ocean execute
1006Eugene I. Butikov
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cillatory motions in closed paths that are considera
stretched horizontally. On the average, the water is station
in the geocentric frame.

To obtain the dynamical picture of tides on the rotati
earth, we should use the reference frame that rotates with
earth. Relative to this frame, the quadrupole system of t
generating forces, being coupled to the position of the
~moon!, rotates as a whole while the sun~moon! travels
along its apparent daily path around the earth. This rota
of the forces occurs at an angular velocityV, the angular
velocity of the earth’s daily rotation~or the difference be-
tweenV and the angular velocity of the moon in its orbit fo
moon-induced tides!. Such a uniform rigid rotation of the
system of mutually fixed vectors can be represented a
superposition of two oscillating quadrupole systems of for
~with a frequencyv52V! that do not rotate and whose ax
make an angle of 45° to one another. At each point one
these forces oscillates along the radial~vertical! direction,
while the other force—along the tangential~horizontal! di-
rection. The oscillations of these orthogonal components
cur a quarter period out of phase. At any given point in
equatorial plane, the vector sum of these mutually orthogo
oscillating forces produces a force of constant magnit
whose direction rotates uniformly following the appare
motion of the sun~moon!, but with angular velocityv
52V.10 For different points on the earth, the phases of th
rotating vectors differ.

IX. THE TIDES AS FORCED OSCILLATIONS OF
THE OCEAN

What is really of interest is the steady-state forced os
lation of the ocean surface due to the time-dependent t
forces. Each of the two oscillating systems of forces
scribed above excites a mode of forced oscillation of
water in the equatorial canal, specifically the mode of
same symmetry as is characteristic of the corresponding
tem of driving forces. These modes have elliptical shap
much like the natural oscillations considered above, nam
the elliptical standing waves whose axes make an angl
45° with one another. Nevertheless, we can consider th
modes to be orthogonal in the sense that their spatial fo
are described by eigenfunctions forming an orthogonal b
in the function space. The two forced oscillations in th
linear system, each excited by one system of oscillating d
ing tidal forces, are independent of one another, and the
sulting forced motion is a superposition of these forced
cillations.

Any steady-state forced oscillation occurs exactly with
period of the driving force. The amplitude and phase lag
the oscillation depend on the amplitude of the driving for
on the damping factor, and, more importantly, on the relat
between the driving and natural periods. The two system
oscillating driving tidal forces are characterized by equal a
plitudes and frequencies. Also the natural frequencies
damping factors of both excited modes are equal. Hence
excited modes also have equal amplitudes and equal p
delays behind the corresponding driving forces. The su
position of these modes produces a forced circulating~trav-
eling! elliptical wave that has the same phase relation w
the rotating driving forces as is characteristic of forced
cillations in general.

If we ignore friction ~dissipation of mechanical energy i
the excited wave motion!, the forced motion occurs exactl
1007 Am. J. Phys., Vol. 70, No. 10, October 2002
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in phasewith the driving force, provided the driving perio
is longer than the natural period. Otherwise the forced m
tion occurs in theopposite phasewith respect to the driving
force. For the simplified model of tides in the equator
canal of uniform depth~and also for an earth covered ever
where by an ocean of uniform depth!, the natural period of
free oscillation is longer than the 12-h driving period. Th
the dynamical theory predicts in this case a stationary cir
lating elliptically shaped wave whose axis~the line of tidal
bulges! is perpendicularto the earth–sun~earth–moon! line.

On the other hand, the natural period of an elastic wave
the crust of the earth is shorter than the 12-h period of
tidal forces. Hence, in the frictionless model, bulges in t
earth’s crust are orientedalong the earth–sun~earth–moon!
line. Observations show that the solid body of the earth
tually experiences twice-daily tides with maximum amp
tude of about 30 cm whose bulges lag approximately
behind the earth–moon line.17

X. MATHEMATICAL DESCRIPTION OF THE
FORCED OSCILLATIONS

Each of the partial forced oscillations can be described
a differential equation of a linear oscillator. Letq1(t) be the
normal coordinate describing the first forced oscillati
whose elliptical shape is characterized by a major axis
ented along the earth–sun line~and in the perpendicular di
rection after a half period!, and letq2(t) be the normal co-
ordinate describing the second oscillation with the a
inclined 45° to the earth–sun line. A disturbance of the wa
surface caused by the first oscillation can be described
Dr 1(u,t)5q1(t)cos(2u), which gives the small vertical dis
placement of the surface at an arbitrary point (r 0 ,u) of the
equator. Similarly, the second oscillation causes a distor
of the surface described byDr 2(u,t)5q2(t)sin(2u). The
forced oscillations experienced by the normal coordina
q1(t) and q2(t) are periodic~steady-state! partial solutions
of the two differential equations:

q̈112gq̇11v0
2q15v0

2a cosvt,
~20!

q̈212gq̇21v0
2q25v0

2a sinvt.

Herev0 is the natural frequency of the corresponding mo
(v052p/T052(gh)1/2/r 0), g is the damping constant,v
52V is the driving frequency, anda is the magnitude of the
equilibrium distortion of the ocean surface under the sta
system of tidal forces~that is, the distortion for the plane
whose axial rotation is synchronized with its orbital revol
tion!. The theoretical value ofa is given by Eq.~11! or ~18!.
Although the values ofv and a are fairly well known, the
situation is quite different regarding the values ofv0 andg.

In the limiting case of extremely slow rotation of the eart
the steady-state solution of Eq.~20! is q1(t)5a cosvt,
q2(t)5a sinvt. This solution describes the quasistatic elli
tical distortion whose axis follows adiabatically the slow
rotating earth–sun~earth–moon! line. The major axis of the
ellipse at any moment is oriented along this line. The d
placement of the water level from its mean position in t
equatorial plane in this limiting case is given by
1007Eugene I. Butikov
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Dr ~u,t !5Dr 1~u,t !1Dr 2~u,t !

5q1~ t !cos 2u1q2~ t !sin 2u

5a~cos 2Vt cos 2u1sin 2Vt sin 2u!

5a cos 2~Vt2u!. ~21!

To find the distortion of the water surface for an arbitra
value ofv, we can use the relevant well-known steady-st
solution to Eq.~20! for the normal coordinatesq1(t) and
q2(t):

q1~ t !5q0 cos~vt2d!, q2~ t !5q0 sin~vt2d!, ~22!

where their common amplitudeq0 and phase lagd are given
by

q05
v0

2a

A~v0
22v2!214g2v2

,

~23!

tand5
2gv

v0
22v2 .

~See, for example, Ref. 18, pp. 372–373.! Therefore the re-
sulting distortion of the water surface under the tidal force
given by

Dr ~u,t !5Dr 1~u,t !1Dr 2~u,t !

5q1~ t !cos 2u1q2~ t !sin 2u

5q0@cos~2Vt2d!cos 2u1sin~2Vt2d!sin 2u#

5q0 cos 2~Vt2d/22u!. ~24!

We see from Eq.~24! that at any time t the maximum
~high water! of the tidal wave circulating around the earth
located at the position defined by the angleumax5Vt2d/2.
That is, the position of the maximum lags behind the s
~moon! by the angled/2. If g!v, it follows from Eq. ~23!
that this retarding angle is almost zero ifv,v0 . In other
words, the marine tide would be nearly the equilibrium ti
with the high-water time coinciding with culminations of th
sun~moon! if the natural period of the circulating wave we
less than the 12-h driving period~that is, if T0,T!. How-
ever, for our model of the ocean, we estimate the nat
period to be close to 30 h. Therefore the situation cor
sponds tov.v0 , when the steady-state forced oscillatio
occur nearly in the opposite phase relative to the driv
force. In this case the tide should be inverted with respec
the equilibrium one. The retarding angled/2 approachesp/2
according to Eq.~23!, which means that for a given equat
rial point, the high water occurs when the sun~moon! is
almost at the horizon~rather than at zenith or nadir!.

At any given place on the equator, it follows from Eq.~24!
that the water level~above the average value! varies with t
according toz(t)5q0 cos(2Vt2d), wheret50 corresponds
to the culmination of the sun~moon! at the place in question
We can expect that for the model of a water canal of unifo
depth, the value ofq0 given by Eq. ~23! is more or less
reliable because hydrodynamics allows us to estimate
natural frequencyv052p/T052(gh)1/2/r 0 by using the
known speedn5(gh)1/2 of very long gravitational waves
However, considerable uncertainty is related to the damp
factor g. If we assume that the damping is small (g!v0),
we can conclude that the orientation of the tidal bulges
1008 Am. J. Phys., Vol. 70, No. 10, October 2002
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viates only slightly from the line perpendicular to the sun
earth~moon–earth! line, but the particular value of this de
viation remains indefinite.

In the above discussion, we considered only the stea
state oscillation of the ocean surface~the stationary wave!,
assuming that the transient is already over. For this ste
motion to establish itself, some friction~even if very small!
is necessary. In the problem under consideration, we are
cerned with the water motion caused solely by the eter
tidal forces, and therefore we have had centuries and e
millennia to wait for the fading away of the transient. Ther
fore our use of the steady-state solution is appropriate
tides. We also emphasize that in the dynamical theory
tides, the driving tide-generating forces are perfectly w
known, so that most uncertainties originate primarily from
very poor correspondence between the simple model of
dynamical system and the real oceans of the earth.

XI. REAL-WORLD COMPLICATIONS

The pattern of tide-generating forces is coupled to the
sition of the moon~and the sun! with respect to the earth. Fo
any place on the earth’s surface, the relative position of
moon has an average periodicity of 24 h 50 min. The lu
tide-generating force experienced at any location has
same periodicity. When the moon is in the plane of the eq
tor, the force runs through two identical cycles within th
time interval because of the quadrupole symmetry of
global pattern of tidal forces. Consequently, the tidal per
is 12 h 25 min in this case~the period of the semidiurna
lunar tide!. However, the lunar orbit doesn’t lie in the plan
of the equator, and the moon is alternately to the north an
the south of the equator. The daily rotation of the earth ab
an axis inclined to the lunar orbital plane introduces
asymmetry in the tides. This asymmetry is apparent as
inequality of the two successive cycles within 24 h 50 m

Similarly, the sun causes a semidiurnal solar tide with
12-h period, and a diurnal solar tide with a 24-h period. In
complete description of the local variations of the tid
forces, still other partial tides play a role because of furth
inequalities in the orbital motions of the moon and the ea
In particular, the elliptical shape of the moon’s orbit pr
duces a 40% difference between the lunar tidal forces at
perigee and apogee of the orbit. Also the inclination of t
moon’s orbit varies periodically in the interval 18.3° – 28.6
causing a partial tide with a period of 18.6 yr. The interfe
ence of the sun-induced tidal forces with the moon-induc
tidal forces~the lunar forces are about 2.2 times as stron!
causes the regular variation of the tidal range betweenspring
tide, when the range has its maximum~occurring at a new
moon and at a full moon, when the sun and moon are in
same or in the opposite directions!, andneap tide, when the
range has its minimum~which occurs at intermediate phas
of the moon!. The amplitude of a spring tide may be 2
times the amplitude of a neap tide.

Because the earth is not surrounded by an uninterrup
water envelope of equal depth, but rather has a very irreg
geographic alternation of land and seas with complex fl
geometry, the actual response of the oceans and seas t
tidal forces is extremely complex. In enclosures formed
gulfs and bays, the local tide is generated by an interac
with the tides of the adjacent open ocean. Such a tide o
takes the form of a running tidal wave that circulates with
the confines of the enclosure. In some nearly enclosed s
1008Eugene I. Butikov
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such as the Mediterranean, Black, and Baltic seas, a ste
state oscillation in the form of a standing wave, or tidal s
iche, may be generated by the tidal forces. In these seas
tidal range of sea level is only on the order of centimeters
the open ocean, it generally is on the order of decimeter

In bays and adjacent seas, however, the tidal range ma
much greater because the shape of a bay or adjacent sea
favor the enhancement of the tide inside. In particular, th
may be a resonance response of the basin concerned wit
tide. Tides are most easily observed along seacoasts, w
the amplitudes are exaggerated. When tidal currents run
the shallow waters of the continental shelf, their rate of
vance is reduced, the energy accumulates in a smaller
ume, and the rise and fall are amplified. The details of ti
motions in coastal waters, particularly in channels, gulfs, a
estuaries, depend on the details of coastal geometry
water-depth variation over a complex sea floor. Tidal am
tudes and phase lags, the contrast between spring and
tides, and the variation of times of high and low tide
change widely from place to place.

For the aforementioned reasons, a purely theoretical
culation of the times and heights of tides at a particular
cation is practically impossible. Nevertheless, for a giv
place on a coast, the tides can be quite successfully pred
on the basis of accumulated long-term observations of
tides at the place concerned. The analysis of the observa
relies on the fact that any tidal pattern in time is a super
sition of variations associated with periodicities in the m
tions of the moon and the sun relative to the earth. T
periods involved are the same everywhere on the earth,
the relative amplitudes and phases of their contributions
highly variable from one place to another. Observations o
a sufficient time make it possible to calculate which con
butions are significant at a particular location and, thus
forecast tidal times and heights. It is common that 40 h
monic components may be significant for practical calcu
tions at one location.17

XII. THE EVOLUTION OF ORBITAL MOTIONS
AND SPINS OF CELESTIAL BODIES INDUCED BY
TIDAL FORCES

When the forced motion occurs exactly in the same
opposite phase with respect to the driving force, no ene
exchange occurs on average between the external sourc
the oscillatory system. To explain the secular variation~the
retardation! of the earth’s axial rotation under the tid
forces, we have to take friction into account.

One may wonder why the dissipation of mechanical
ergy in the tides has a scale that seems very modest.
point is that only thewavecirculates around the globe, no
the water itself. The phase lagd of the steady-state force
oscillation behind the periodic driving force is determined
Eq. ~23!. For the mode of oscillations in which we are inte
ested, this phase-frequency characteristic is almost a
function ~zero forv,v0 , that is, forT.T0 , and2p oth-
erwise!. Only near resonance (v'v0) is this step slightly
smoothed over. Therefore the displacement of the tidal w
bulges from the line perpendicular to the sun–earth~moon–
earth! axis is very small.

However, this displacement, which destroys the symme
of the system~Fig. 4!, is absolutely necessary in principle
order that the driving tidal forces be capable of maintain
the circulating tidal wave~that is, of preventing it from
1009 Am. J. Phys., Vol. 70, No. 10, October 2002
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damping out!. If the earth is taken as the reference frame,
can see that by virtue of this phase shift and the correspo
ing displacement of bulges, the tidal forces exert a retard
torque relative to the earth’s axis and thus do nonzero
work on the system. This work compensates for the frictio
losses experienced by the tidal traveling surface wave
measures the gradual reduction of the mechanical energ
the system. The energy is provided by the axial rotat
~spin! of the earth. Hence the spin secularly slows down a
the angular momentum of the axial rotation diminishes.

Looking at the whole system from the inertial referen
frame, we should remember that the sun~moon! interacts
with the earth only by its central gravitational force. If th
bulges were oriented exactly along or perpendicularly to
sun earth~moon–earth! axis, this gravitational force would
not exert a torque on the earth. If we consider the grav
tional forcesF1 and F2 ~Fig. 4! exerted on the bulges, w
conclude that the retarding torque about the earth’s a
which slows down the axial rotation, is due to the abov
mentioned displacement of the bulges which destroys
symmetry of the system with respect to the earth–s
~earth–moon! line.

However, the total torque of the central gravitational fie
of the sun~moon! exerted on the earth and the bulges of
liquid shell, measured relative to the sun~or to the moon for
moon-induced tides!, is zero. Hence the total angular mo
mentum of the system is conserved, as it should be in
closed system. The diminishing of the earth’s spin due
tidal friction means that the orbital momentum of the syst
slowly increases during the tidal evolution. The earth’s or
gradually expands. The lack of symmetry~produced by tidal
friction! does not influence the conservation of total angu
momentum, although it causes a slow secular redistribu
of the angular momentum between the spin and the orb
motion. As the orbit expands, the mechanical energy of
orbital motion also increases. This additional mechanical
ergy, as well as the dissipated energy, is borrowed from
energy of axial rotation.19

This conclusion about expanding the moon’s orbit, deriv
from the conservation of angular momentum, is often e
countered in the literature~see, for example, Ref. 20!. Al-
though quite convincing, it nevertheless leaves the ac
mechanism unexplained. To understand the physical rea
for this phenomenon, it helps to take the forces into acco
If we consider the properties of the gravitational forcesF18
and F28 ~see Fig. 4! that are exerted on the moon by th
earth’s tidal bulges and their influence on the orbital motio
we draw attention to a subtle peculiarity that deserves
cussion. While the orbit expands, the orbital velocity of t
moon diminishes. However, from the asymmetry in the co
figuration that is responsible for the evolution, we can co
clude that the resultant gravitational force exerted on

Fig. 4. Gravitational interaction between the moon and the tidal bulge
1009Eugene I. Butikov
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moon by the tidal bulges is directedforward, in the direction
of the orbital motion. How can this accelerating force slo
down the orbital motion? All authors who write about tid
evolution leave this question unanswered.

This situation is similar to the widely known paradox
an earth satellite in a circular orbit that gradually descend
the rarified upper atmosphere: Intuitively we expect that
weak atmospheric drag should slow down the satellite,
instead, the satellite gains speed as its orbit gradually
creases. Because of air resistance, the satellite is accele
in the direction of its motion, as if the retarding force of a
resistance were pushing the satellite forward. An explana
of this so-called aerodynamical paradox of the satellite
be found in Ref. 21.

To understand the slowing down of the moon during tid
evolution, we must take into account that the moon gradu
spirals away from the earth and its orbit spreads out, so
the actual motion of the moon occurs along an expand
spiral. A portion of this trajectory~with a strongly exagger-
ated expansion! is shown schematically in Fig. 5. Because
this expansion, the perpendicular to the trajectory is direc
not to the center of the earth but rather slightly in front of t
center. Therefore the main gravitational pullF exerted on the
moon by the earth has a retarding tangential componenFt
directed back along the trajectory. This component is gre
in magnitude than the forward-directed tangential compon
of F18 andF28 ~see Fig. 4! that are exerted on the moon by th
tidal bulges~this component is not shown in Fig. 5!. Hence
the total tangential acceleration of the moon is direc
against the velocity.

Generally, in order to explain tidal evolution, that is, th
reduction of spin and the secular variation of the orbits
gravitationally coupled celestial bodies, it is necessary
take into account both the dynamic distortion of the spher
shape of the body~and of its liquid shell, if any! under the
tidal forces, and the additional displacement of the bul
caused by tidal friction. The nonuniform gravitational fie
of one body in an orbit about another distorts the shape
the second. The dissipation of energy stored in the resu
tidal distortions leads to a coupling that causes sec
changes in the orbit and in the spins of both bodies. Re
dation of the axial rotation and evolution of the orbit w
continue until the axial rotation is synchronous with t
mean orbital revolution.

Fig. 5. The main~central! gravitational pull of the earth exerted on th
moon.
1010 Am. J. Phys., Vol. 70, No. 10, October 2002
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This effect is vital to an understanding of the history of t
earth and moon. That the moon always keeps the same
turned toward the earth is attributed to the past effects
tidal friction in the moon. The dissipation of tidal energy o
the earth results in a slowing of the earth’s axial rotati
while the moon’s orbit is gradually expanding. Both the cu
rently observed increase in the length of the day of 0.00
s/century and the recession of the moon of 3 to 4 cm/yr
understood as consequences of the tides raised by the m
on the earth. Billions of years from now the moon will be
far from the earth that the duration of the month will b
equal to the duration of the day. The tidal evolution of t
system ends with synchronization of the axial rotation
both orbiting bodies with their orbital revolution. The leng
of both the day and month in this final state of cohere
rotation will be approximately 50 present days, as can
calculated on the basis of angular-momentum conserva
~see, for example, Ref. 13!. Similarly, tidal effects on the
earth influence its axial rotation and its orbital revolutio
around the sun.22

Tidal dissipation accounts for the current states of ax
rotation of several planets, the spin states of most of
planetary satellites, and the spins and orbits of close bin
stars. For example, all the major and close planetary sa
lites in the solar system~with the exception of Saturn’s sat
ellite Hyperon! are observed to be rotating synchronous
with their orbital motion. The distant planet Pluto and
satellite Charon are the pair in the solar system that has
most certainly reached the end point where further tidal e
lution has ceased. In this state the orbit is circular, with b
bodies rotating synchronously with the orbital motion a
both spin axes perpendicular to the orbital plane. Simila
many close binary stars are observed to have circular or
and synchronized spins, providing numerous examples
evolution under tidal forces elsewhere in the Milky Way. T
role of tides in the cosmogony was first recognized by
astronomer George Darwin, who developed a theory of
heavenly evolution under tidal friction.23

Another interesting manifestation of the tidal forces is t
Roche limit, the minimum distance to which a large~natural!
satellite can approach its primary body without being to
apart by tidal forces. To evaluate this critical distanceRc , we
can equate the vertical tidal force, Eq.~6!, exerted on a mass
point located atu50 or u5p on the surface of a satellite o
radiusr sat and massmsat by its primary of massM , and the
force of self-gravitation of the satellite~that is, the force of
gravitational attraction of this mass pointm to the satellite!:

2
GmM

Rc
3 r sat5

Gmmsat

r sat
2 ,

whence

Rc5r satA3
2M

msat
5r planetA3

2r

rsat
. ~25!

In Eq. ~25! r planet is the radius of the primary,r is its mean
density, andrsat is the satellite’s mean density. If the satelli
and its primary are of similar composition (r'rsat), the the-
oretical limit is about 21/351.26 times the radius of the
larger body. The famous rings of Saturn lie inside Satur
Roche limit and may be the debris of a demolished moo
1010Eugene I. Butikov
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